地震地质 ›› 2022, Vol. 44 ›› Issue (1): 220-237.DOI: 10.3969/j.issn.0253-4967.2022.01.014
徐芳1)(), 鲁人齐1),*(), 王帅2), 江国焰3), 龙锋4), 王晓山5), 苏鹏1), 刘冠伸1)
收稿日期:
2021-01-15
修回日期:
2021-04-27
出版日期:
2022-02-20
发布日期:
2022-04-20
通讯作者:
鲁人齐
作者简介:
徐芳, 女, 1997年生, 2019年于合肥工业大学获地质学学士学位, 现为中国地震局地质研究所构造地质学专业在读硕士研究生, 主要从事活动构造分析与三维建模研究, E-mail: xufangq@sina.cn。
基金资助:
XU Fang1)(), LU Ren-qi1),*(), WANG Shuai2), JIANG Guo-yan3), LONG Feng4), WANG Xiao-shan5), SU Peng1), LIU Guan-shen1)
Received:
2021-01-15
Revised:
2021-04-27
Online:
2022-02-20
Published:
2022-04-20
Contact:
LU Ren-qi
摘要:
2020年2月3日, 四川省成都市青白江区发生 MS5.1 地震, 震中位于川西盆地的龙泉山断裂带北段。龙泉山断裂带北段存在东、 西2支断层, 2条断层与震中的距离相近。目前, 此次地震的发震断层、 地震成因与动力来源尚不清楚。文中尝试采用多元约束方法, 将地球物理学、 地震学、 大地测量学理论和构造地质学与断层相关褶皱理论相结合, 对青白江 MS5.1 地震进行了综合研究。地震反射剖面揭示了龙泉山背斜北段的基本构造特征, 为发育在4~6km深度的中下三叠统膏盐滑脱层之上的逆冲断层和反冲断层的组合, 且具有突破式断层传播褶皱特征; 研究中采用CAP波形反演法得到了此次地震的震源矩心深度和震源机制解, 其中震源矩心深度为5km, 表明地震与浅层断层活动有关; 震源机制解的节面Ⅰ为18°/32°/100°, 节面Ⅱ为186°/59°/84°; 通过Hyposat定位法和双差定位法对青白江地震序列进行重定位, 得到主震的震中位置为(30.73°N, 104.48°E), 定位的61次余震主要集中分布于龙泉山断裂带北段东支附近, 且具有较好的关联性, 东支断层的产状与震源机制解节面Ⅰ一致, 为倾向NW的低角度逆断层。研究提取了震中附近的InSAR同震形变场, 同震形变量最大可达4cm; 地震造成的形变在震中西北部为隆起, 东南部为凹陷, 且最大凹陷部位位于震中与龙泉山东支断裂之间, 符合东支断裂逆冲的活动特征。文中通过多学科交叉的多元约束, 对2020年青白江 MS5.1 地震的发震构造进行了详细分析, 厘定了发震断层并探讨了可能的地震动力学背景, 可为龙泉山地区的断层活动性分析和地震风险评估提供一定的科学依据。
中图分类号:
徐芳, 鲁人齐, 王帅, 江国焰, 龙锋, 王晓山, 苏鹏, 刘冠伸. 基于多元约束方法的2020年四川青白江MS5.1地震构造研究[J]. 地震地质, 2022, 44(1): 220-237.
XU Fang, LU Ren-qi, WANG Shuai, JIANG Guo-yan, LONG Feng, WANG Xiao-shan, SU Peng, LIU Guan-shen. STUDY ON THE SEISMOTECTONICS OF THE QINGBAIJIANG MS5.1 EARTHQUAKE IN SICHUAN PROVINCE IN 2020 BY MULTIPLE CONSTRAINT METHOD[J]. SEISMOLOGY AND EGOLOGY, 2022, 44(1): 220-237.
图 1 龙门山-龙泉山主要断裂带及其周缘构造背景 a 龙泉山及其周缘地区地形图; 数据来源于SRTM数字高程模型, 水平分辨率为30m。 b 研究区区域构造位置; 青白江 MS5.1地震主震(黄色五角星)的平面位置是双差定位后的结果(见表1和3.2节); 橘黄色矩形①指示图5的范围
Fig. 1 Tectonic background of Longmenshan-Longquanshan main fault zone and its surrounding area.
图 2 龙泉山断裂带北段及周边地区的1︰20万地质图(改自鲁人齐等, 2010) f1龙泉山断裂带北段西支断层; f2龙泉山断裂带北段东支断层(下同)。黄色五角星是青白江地震主震的震中
Fig. 2 The 1︰200 000 geological map of north segment and surrounding area of Longquanshan fault zone (Revised from LU Ren-qi et al., 2010).
图 3 龙泉山北段石油地震反射剖面解释图 a—c分别为AA'、 BB'、 CC' 3条人工地震反射剖面解译, 剖面位置见图 1 。P-Z 二叠纪-寒武系; T1-2 中-下三叠统;T3 上三叠统; J 侏罗系; K 白垩系; Q 第四系。黑色矩形②指示图6的范围
Fig. 3 Interpretation of petroleum seismic reflection profile in the north segment of Longquanshan.
机构或学者 | 位置 | 节面Ⅰ | 节面Ⅱ | 深度 /km | 震级 | |||||
---|---|---|---|---|---|---|---|---|---|---|
东经 /(°) | 北纬 /(°) | 走向 /(°) | 倾角 /(°) | 滑动角 /(°) | 走向 /(°) | 倾角 /(°) | 滑动角 /(°) | |||
Lei et al., | 104.46 | 30.74 | 15 | 36 | 82 | 205 | 54 | 96 | 3.3 | MS5.1 |
GCMT, | 104.54 | 30.57 | 30 | 33 | 114 | 183 | 60 | 75 | 12.5 | MS4.8 |
中国地震台网中心, | 104.46 | 30.74 | 21 | MS5.1 | ||||||
USGS, | 104.54 | 30.76 | 45 | 77 | 105 | 175 | 19 | 41 | 10 | MW4.8 |
韩颜颜等, | 104.46 | 30.74 | 25 | 34 | 100 | 193 | 57 | 83 | 5 | MW4.8 |
本文 | 104.48 | 30.73 | 18 | 32 | 100 | 186 | 59 | 84 | 5 | MW4.6 |
表1 青白江 MS5.1 地震的震源机制解
Table 1 Focal mechanism of the MS5.1 Qingbaijiang earthquake
机构或学者 | 位置 | 节面Ⅰ | 节面Ⅱ | 深度 /km | 震级 | |||||
---|---|---|---|---|---|---|---|---|---|---|
东经 /(°) | 北纬 /(°) | 走向 /(°) | 倾角 /(°) | 滑动角 /(°) | 走向 /(°) | 倾角 /(°) | 滑动角 /(°) | |||
Lei et al., | 104.46 | 30.74 | 15 | 36 | 82 | 205 | 54 | 96 | 3.3 | MS5.1 |
GCMT, | 104.54 | 30.57 | 30 | 33 | 114 | 183 | 60 | 75 | 12.5 | MS4.8 |
中国地震台网中心, | 104.46 | 30.74 | 21 | MS5.1 | ||||||
USGS, | 104.54 | 30.76 | 45 | 77 | 105 | 175 | 19 | 41 | 10 | MW4.8 |
韩颜颜等, | 104.46 | 30.74 | 25 | 34 | 100 | 193 | 57 | 83 | 5 | MW4.8 |
本文 | 104.48 | 30.73 | 18 | 32 | 100 | 186 | 59 | 84 | 5 | MW4.6 |
图 4 2020年青白江 MS5.1 地震波形拟合结果与震源机制 a 理论地震图与观测地震图拟合, 红线表示理论地震图, 黑线表示观测地震图, 波形下方的2行数字分别表示理论地震图相对观测地震图的移动时间及二者的相关系数(用百分比表示); b 震源机制反演误差随深度的变化
Fig. 4 Waveform fitting and focal mechanism for the MS5.1 Qingbaijiang earthquake.
图 5 2020年青白江地震主震及余震的平面分布图 黄色五角星是青白江地震主震的震中位置, 黄色圆圈为余震震中, 此图位置见图1中橘黄色矩形①。青白江地震的震源机制解沙滩球采用上半球投影(下同)
Fig. 5 Plane distribution of main shock and aftershock of Qingbaijiang earthquake in 2020.
图 6 青白江地震主震及余震的垂向分布图 青白江地震主震及余震在人工地震反射剖面上的垂向分布投影, 地震反射剖面的位置见图3a黑色矩形②。黄色五角星为主震位置, 黄色圆圈为余震的位置; 图中的沙滩球是经旋转后的沙滩球。黑色矩形③的位置即为图 9 的范围
Fig. 6 The vertical distribution of the main shock and aftershocks of Qingbaijiang earthquake in 2020.
图 7 研究区Sentinel-1卫星55轨道数据的处理结果 a 55升轨数据提取的青白江地震同震形变; b 沿EE'剖面的变形。黄色五角星为青白江地震的震中位置
Fig. 7 Processing results of orbit 55 data of Sentinel-1 satellite in the study area.
图 8 研究区Sentinel-1卫星62轨道数据的处理结果 a 62降轨数据提取的青白江地震同震形变; b 沿EE'剖面的变形。黄色五角星为青白江地震的震中位置
Fig. 8 Processing results of orbit 62 data of Sentinel-1 satellite in the study area.
图 9 2020年青白江 MS5.1 地震构造的综合分析 a Sentinel-1卫星55升轨数据提取的断层部分的同震形变; b 不同震源位置在地震反射剖面上的投影,剖面位置见图6中的黑色矩形③。绿色五角星是Lei等(2020)的定位结果; 黄色五角星是本文双差定位后的结果
Fig. 9 Seismotectonics analysis of the MS5.1 Qingbaijiang earthquake in 2020.
图 10 龙门山—龙泉山区域地质与地震构造模型 F1 汶川-茂汶断裂; F2 映秀-北川断裂; F3 灌县-安县断裂。剖面位置见图1中的DD'
Fig. 10 The geological and seismotectonic model of the Longmenshan and Longquanshan region.
[1] | 曹伟. 1994. 龙门山推覆构造带中段前缘构造浅析[J]. 石油实验地质, 16(1): 35-42. |
CAO Wei. 1994. On the overthrusting tectonics of the front margin along the middle section of the Longmenshan tectonic belt[J]. Experimental Petroleum Geology, 16(1): 35-42. (in Chinese) | |
[2] | 陈社发, 邓起东, 赵小麟, 等. 1994. 龙门山中段推覆构造带及相关构造的演化历史和变形机制(二)[J]. 地震地质, 16(4): 413-421. |
CHEN She-fa, DENG Qi-dong, ZHAO Xiao-lin, et al. 1994. Deformational characteristics, evolutionary history, and deformation mechanism of the middle Longmenshan thrust-nappes and related tectonics[J]. Seismology and Geology, 16(4): 413-421. (in Chinese) | |
[3] | 陈竹新, 王丽宁, 杨光, 等. 2020. 川西南冲断带深层地质构造与潜在油气勘探领域[J]. 石油勘探与开发, 47(4): 653-667. |
CHEN Zhu-xin, WANG Li-ning, YANG Guang, et al. 2020. Geological structures and potential petroleum exploration areas in the southwestern Sichuan fold-thrust belt, SW China[J]. Petroleum Exploration and Development, 47(4): 653-667. (in Chinese) | |
[4] | 邓起东, 陈社发, 赵小麟. 1994. 龙门山及其邻区的构造和地震活动及动力学[J]. 地震地质, 16(4): 389-403. |
DENG Qi-dong, CHEN She-fa, ZHAO Xiao-lin. 1994. Tectonics, seismicity and dynamics of Longmenshan Mountains and its adjacent regions[J]. Seismology and Geology, 16(4): 389-403. (in Chinese) | |
[5] | 国家地震科学数据中心. 2020. 中国台网正式地震目录[EB/OL]. [2020-11-01]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_zhengshi. |
National Earthquake Data Center. 2020. Official earthquake catalogue of China Network[EB/OL]. [2020-11-01]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_zhengshi. (in Chinese) | |
[6] | 韩颜颜, 马亚伟, 解孟雨, 等. 2020. 2020年2月3日四川青白江5.1级地震总结[J]. 地震地磁观测与研究, 41(5): 141-152. |
HAN Yan-yan, MA Ya-wei, XIE Meng-yu, et al. 2020. Summary of Qingbaijiang MS5.1 earthquake in Sichuan on February 3, 2020[J]. Seismological and Geomagnetic Observation and Research, 41(5): 141-152. (in Chinese) | |
[7] | 黄伟, 江娃利. 2012. 四川龙泉山断裂带及其活动性与潜在地震危险性讨论[J]. 西北地震学报, 34(1): 50-56. |
HUANG Wei, JIANG Wa-li. 2012. Discussion on the Late Quaternary activity and earthquake risk potential of Longquanshan Fault in Sichuan[J]. Northwestern Seismological Journal, 34(1): 50-56. (in Chinese) | |
[8] | 黄祖智, 唐荣昌. 1995. 龙泉山活动断裂带及其潜在地震能力的探讨[J]. 四川地震, (1): 18-23. |
HUANG Zu-zhi, TANG Rong-chang. 1995. The Longquanshan fault zone and exploration of potential earthquake ability[J]. Earthquake Research in Sichuan, (1): 18-23. (in Chinese) | |
[9] | 李洪奎, 李忠权, 龙伟, 等. 2019. 四川盆地纵向结构及原型盆地叠合特征[J]. 成都理工大学学报(自然科学版), 46(3): 257-267. |
LI Hong-kui, LI Zhong-quan, LONG Wei, et al. 2019. Vertical configuration of Sichuan Basin and its superimposed characteristics of the prototype basin[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 46(3): 257-267. (in Chinese) | |
[10] | 刘亮, 梁斌, 燕中林, 等. 2019. 龙泉山断裂带隐伏断层氡气特征及其活动性分析[J]. 沉积与特提斯地质, 39(2): 45-53. |
LIU Liang, LIANG Bin, YAN Zhong-lin, et al. 2019. Soil gas radon and fault activity in the Longquanshan fault zone, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 39(2): 45-53. (in Chinese) | |
[11] | 刘亮, 梁斌, 燕中林, 等. 2020. 龙泉山断裂带断层最新活动年代及方式[J]. 中国地质调查, 7(5): 77-87. |
LIU Liang, LIANG Bin, YAN Zhong-lin, et al. 2020. Latest active age and model of the faults in Longquanshan fault belt[J]. Geological Survey of China, 7(5): 77-87. (in Chinese) | |
[12] | 刘树根, 李智武, 曹俊兴, 等. 2009. 龙门山陆内复合造山带的四维结构构造特征[J]. 地质科学, 44(4): 1151-1180. |
LIU Shu-gen, LI Zhi-wu, CAO Jun-xing, et al. 2009. 4-D textural and structural characteristics of Longmen intracontinental composite orogenic belt, southwest China[J]. Chinese Journal of Geology, 44(4): 1151-1180. (in Chinese) | |
[13] | 刘树根, 罗志立, 赵锡奎, 等. 2003. 中国西部盆山系统的耦合关系及其动力学模式: 以龙门山造山带-川西前陆盆地系统为例[J]. 地质学报, 77(2): 177-186. |
LIU Shu-gen, LUO Zhi-li, ZHAO Xi-kui, et al. 2003. Coupling relationships of sedimentary basin-orogenic belt systems and their dynamic models in West China: A case study of Longmenshan orogenic belt-West Sichuan foreland basin system[J]. Acta Geologica Sinica, 77(2): 177-186. (in Chinese) | |
[14] | 鲁人齐, 何登发, Suppe J, 等. 2010. 龙门山中段山前带浅层冲断系统的结构、 形成与演化[J]. 地质科学, 45(4): 997-1010. |
LU Ren-qi, HE Deng-fa, Suppe J, et al. 2010. The structures, formation and evolution of the shallow thrusting system in the central Longmen Mountains front belt[J]. Chinese Journal of Geology, 45(4): 997-1010. (in Chinese) | |
[15] | 钱琦, 韩竹军. 2011. 汶川地震对龙泉山断裂地震发生概率的影响研究[J]. 地球物理学进展, 26(2): 489-497. |
QIAN Qi, HAN Zhu-jun. 2011. The research in the change of the earthquake occurrence probability in Longquan Shan Fault after the Wenchuan earthquake[J]. Progress in Geophysics, 26(2): 489-497. (in Chinese) | |
[16] | 四川省地震局. 2020. 2020年2月3日四川成都青白江5.1级地震烈度图分布及说明[EB/OL].(2020-02-04) [2020-12-28]. http://www.scdzj.gov.cn/xwzx/fzjzyw/202002/t20200204_12909.html. |
Sichuan Earthquake Agency. 2020. Intensity map distribution and explanation of Qingbaijiang MS5.1 earthquake in Chengdu, Sichuan Province on February 3, 2020[EB/OL].(2020-02-04) [2020-12-28]. http://www.scdzj.gov.cn/xwzx/fzjzyw/202002/t20200204_12909.html. (in Chinese) | |
[17] |
宋小刚, 申星, 姜宇, 等. 2015. 通过InSAR与GPS数据融合获取汶川地震同震三维形变场[J]. 地震地质, 37(1): 222-231. doi: 10.3969/j.issn.0253-4967.2015.01.017.
DOI |
SONG Xiao-gang, SHEN Xing, JIANG Yu, et al. 2015. Coseismic 3D deformation field acquisition of the Wenchuan earthquake based on InSAR and GPS data[J]. Seismology and Geology, 37(1): 222-231. (in Chinese) | |
[18] | 孙晓鹏, 鲁小丫, 文学虎, 等. 2016. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 28(3): 123-129. |
SUN Xiao-peng, LU Xiao-ya, WEN Xue-hu, et al. 2016. Monitoring of ground subsidence in Chengdu Plain using SBAS-InSAR[J]. Remote Sensing for Land & Resources, 28(3): 123-129. (in Chinese) | |
[19] | 王伟涛, 贾东, 李传友, 等. 2008. 四川龙泉山断裂带变形特征及其活动性初步研究[J]. 地震地质, 30(4): 968-979. |
WANG Wei-tao, JIA Dong, LI Chuan-you, et al. 2008. Preliminary investigation on deformation characteristics and activity of Longquanshan fault belt in Sichuan[J]. Seismology and Geology, 30(4): 968-979. (in Chinese) | |
[20] | 徐水森, 任寰, 宋杰. 2006. 龙泉山断裂带地震活动性浅析[J]. 四川地震, (2): 21-27. |
XU Shui-sen, REN Huan, SONG Jie. 2006. Primary study on the seismicity along the faults of Longquanshan[J]. Earthquake Research in Sichuan, (2): 21-27. (in Chinese) | |
[21] | 郑勇, 马宏生, 吕坚, 等. 2009. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系[J]. 中国科学(D辑), 39(4): 413-426. |
ZHENG Yong, MA Hong-sheng, LÜ Jian, et al. 2009. Focal mechanism solution of strong aftershocks(MS≥5.6)of Wenchuan earthquake and its relationship with seismogenic structure[J]. Science in China(Ser D), 39(4): 413-426. (in Chinese) | |
[22] | 中国地震台网中心. 2020. 四川成都市青白江区5.1级地震[EB/OL].(2020-02-04) [2020-12-28]. http://news.ceic.ac.cn/CC20200203000542.html. |
China Earthquake Networks Center. 2020. Qingbaijiang MS5.1 earthquake in Chengdu, Sichuan[EB/OL].(2020-02-04) [2020-12-28]. http://news.ceic.ac.cn/CC20200203000542.html. (in Chinese) | |
[23] |
Butler R W H, Bond C E, Cooper M A, et al. 2018. Interpreting structural geometry in fold-thrust belts: Why style matters[J]. Journal of Structural Geology, 114(9): 251-273. doi: 10.1016/j.jsg.2018.06.019.
DOI URL |
[24] | Chen S F, Wilson C J L. 1996. Emplacement of the Longmen Shan thrust-nappe belt along the eastern margin of the Tibetan plateau[J]. Journal of Structural Geology, 18(4): 413-430. |
[25] | GCMT. 2020. 202002021605A SICHUAN, CHINA[EB/OL].(2020-02-04) [2020-12-28]. https://www.globalcmt.org/cgi-bin/globalcmt-cgi-bin/CMT5/form?itype=ymd&yr=2020&mo=2&day=1&otype=ymd&oyr=2020&omo=3&oday=1&jyr=1976&jday=1&ojyr=1976&ojday=1&nday=1&lmw=0&umw=10&lms=0&ums=10&lmb=0&umb=10&llat=30.5&ulat=31&llon=104.4&ulon=104.6&lhd=0&uhd=1000<s=-9999&uts=9999&lpe1=0&upe1=90&lpe2=0&upe2=90&list=0. |
[26] | Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan plateau inferred from GPS measurements[J]. Journal of Geophysical Research, 112(B8): B08416. |
[27] |
Gomberg J S, Shedlock K M, Roecker S W. 1990. The effect of S-wave arrival times on the accuracy of hypocenter estimation[J]. Bulletin of the Seismological Society of America, 80(6): 1605-1628.
DOI URL |
[28] |
Hubbard J, Shaw J H. 2009. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan(M=7.9)earthquake[J]. Nature, 458(7235): 194-197.
DOI URL |
[29] |
Jia D, LiY Q, Lin A M, et al. 2010. Structural model of 2008 MW7.9 Wenchuan earthquake in the rejuvenated Longmen Shan thrust belt, China[J]. Tectonophysics, 491(1): 174-184.
DOI URL |
[30] |
Jia D, Li Y Q, Yan B, et al. 2020. The Cenozoic thrusting sequence of the Longmen Shan fold-and-thrust belt, eastern margin of the Tibetan plateau: Insights from low-temperature thermochronology[J]. Journal of Asian Earth Sciences, 198:1-13. doi: 10.1016/j.jseaes.2020.104381.
DOI |
[31] |
Jia D, Wei G Q, Chen Z X, et al. 2006. Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China: New insights from hydrocarbon exploration[J]. AAPG Bulletin, 90(9): 1425-1447.
DOI URL |
[32] | Jia K. 2020. Modeling the spatiotemporal seismicity patterns of the Longmen Shan fault zone based on the Coulomb rate and state model[J]. Seismological Research Letters, (1): 275-286. |
[33] |
Jiang G Y, Wang Y B, Wen Y M, et al. 2019. Afterslip evolution on the crustal ramp of the Main Himalayan Thrust fault following the 2015 MW7.8 Gorkha(Nepal)earthquake[J]. Tectonophysics, 758:29-43. doi: 10.1016/j.tecto.2019.03.005.
DOI URL |
[34] |
Jiang G Y, Wen Y M, Li K, et al. 2018. A NE-trending oblique-slip fault responsible for the 2016 Zaduo earthquake(Qinghai, China)revealed by InSAR data[J]. Pure and Applied Geophysics, 175(12): 4275-4288.
DOI URL |
[35] | Lei X L, Su J R, Wang Z W. 2020. Growing seismicity in the Sichuan Basin and its association with industrial activities[J]. Science China(Earth Sciences), 63(11): 1633-1660. |
[36] |
Li K, Xu X W, Tan X B, et al. 2015. Late Quaternary deformation of the Longquan anticline in the Longmenshan thrust belt, eastern Tibet, and its tectonic implication[J]. Journal of Asian Earth Sciences, 112(11): 1-10. doi: 10.1016/j.jseaes.2015.08.022.
DOI URL |
[37] |
Li Z G, Jia D, Chen W. 2013. Structural geometry and deformation mechanism of the Longquan anticline in the Longmen Shan fold-and-thrust belt, eastern Tibet[J]. Journal of Asian earth sciences, 64(3): 223-234. doi: 10.1016/j.jseaes.2012.12.022.
DOI URL |
[38] |
Li Z G, Zhang P Z, Zheng W J, et al. 2018. Oblique thrusting and strain partitioning in the Longmen Shan fold-and-thrust belt, eastern Tibetan plateau[J]. Journal of Geophysical Research: Solid Earth, 123(5): 4431-4453.
DOI URL |
[39] |
Lu R Q, He D F, Xu X W, et al. 2016. Crustal-scale tectonic wedging in the central Longmen Shan: Constraints on the uplift mechanism in the southeastern margin of the Tibetan plateau[J]. Journal of Asian Earth Sciences, 117(3): 73-81. doi: 10.1016/j.jseaes.2015.11.019.
DOI URL |
[40] |
Lu R Q, He D F, Xu X W, et al. 2019. Geometry and kinematics of buried structures in the piedmont of the central Longmen Shan: Implication for the growth of the eastern Tibetan plateau[J]. Journal of the Geological Society, 176(2): 323-333.
DOI URL |
[41] | Pavlis G L. 1986. Appraising earthquake hypocenter location errors: A complete, practical approach for single-event location[J]. Bulletin of the Seismological Society of America, 76(6): 1699-1717. |
[42] |
Schweitzer J. 2001. HYPOSAT: An enhanced routine to locate seismic events[J]. Pure and Applied Geophysics, 158(1-2): 277-289.
DOI URL |
[43] | Shaw J H, Connors C, Suppe J. 2004. Seismic Interpretation of Contractional Fault-Related Folds: An AAPG Seismic Atlas[M]. Tulsa: The American Association of Petroleum Geologists. |
[44] |
Suppe J. 1983. Geometry and kinematics of fault-bend folding[J]. American Journal of Science, 283(7): 684-721.
DOI URL |
[45] | USGS. 2020. M4.8-14km SE of Zhaozhen, China[EB/OL].(2020-04-18) [2020-12-28]. https://earthquake.usgs.gov/earthquakes/eventpage/us60007mte/origin/detail. |
[46] |
Waldhauser F, Ellworth W L. 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward Fault, California[J]. Bulletin of the Seismological Society of America, 90(6): 1353-1368.
DOI URL |
[47] |
Wang M M, Lin A M. 2017. Active thrusting of the Longquan Fault in the central Sichuan Basin, China, and the seismotectonic behavior in the Longmen Shan fold-and-thrust belt[J]. Journal of Geophysical Research: Solid Earth, 122(7): 5639-5662.
DOI URL |
[48] | Wang S, Jiang G Y, Weingarten M, et al. 2020. InSAR evidence indicates a link between fluid injection for salt mining and the 2019 Changning(China)earthquake sequence[J]. Geophysical Research Letters, 47(16): e2020GL087603. |
[49] | Werner C, Wegmüller U, Strozzi T, et al. 2001. GAMMA SAR and interferometric processing software[C]. Proceedings of ERS ENVISAT Symposium, Gothenburg, Sweden, 16-20, Oct. 2000. |
[50] |
Wright T J, Parsons B E, Jackson J A, et al. 1999. Source parameters of the 1 October 1995 Dinar(Turkey)earthquake from SAR interferometry and seismic bodywave modelling[J]. Earth and Planetary Science Letters, 172(1): 23-37.
DOI URL |
[51] |
Zhang P Z, Shen Z K, Wang M, et al. 2004. Continuous deformation of the Tibetan plateau from global positioning system data[J]. Geology, 32(9): 809-812.
DOI URL |
[52] | Zhao L S, Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 84(1): 91-104. |
[53] |
Zhu L P, Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 86(5): 1634-1641.
DOI URL |
[1] | 田一鸣, 杨卓欣, 王志铄, 石金虎, 张扬, 谭雅丽, 张建志, 宋威, 季通宇. 新乡-商丘断裂封丘段浅部探测和第四纪活动性的初步研究[J]. 地震地质, 2023, 45(1): 139-152. |
[2] | 李倩, 宋前进, 酆少英, 姬计法, 段永红, 何银娟, 秦晶晶. 深地震反射剖面揭示的兰聊断裂带中南段深部特征[J]. 地震地质, 2022, 44(4): 1029-1045. |
[3] | 王雨晴, 冯万鹏, 张培震. 交角约90°共轭断裂的现今形变及对构造应力场的指示意义——以2019年MW≥6.4菲律宾地震序列为例[J]. 地震地质, 2022, 44(2): 313-332. |
[4] | 华俊, 赵德政, 单新建, 屈春燕, 张迎峰, 龚文瑜, 王振杰, 李成龙, 李彦川, 赵磊, 陈晗, 范晓冉, 王绍俊. 2021年青海玛多MW7.3地震InSAR的同震形变场、断层滑动分布及其对周边区域的应力扰动[J]. 地震地质, 2021, 43(3): 677-691. |
[5] | 罗仁昱, 陈继锋, 尹欣欣, 李少华. 青海共和及周边地区的地壳三维速度结构[J]. 地震地质, 2021, 43(1): 232-248. |
[6] | 顾勤平, 许汉刚, 晏云翔, 赵启光, 李丽梅, 孟科, 杨浩, 王金艳, 蒋新, 马董伟. 郯庐断裂带新沂段地壳浅部结构和断裂活动性探测[J]. 地震地质, 2020, 42(4): 825-843. |
[7] | 王浩然, 陈杰, 李涛, 李跃华, 张博譞. 北天山前陆盆地前缘西湖背斜带第四纪褶皱作用[J]. 地震地质, 2020, 42(4): 791-805. |
[8] | 酆少英, 刘保金, 李倩, 袁洪克, 朱国军, 田一鸣, 王宏伟, 侯黎华, 邓小娟, 谭雅丽. 深地震反射剖面揭示的华北地块南缘地壳的精细结构[J]. 地震地质, 2020, 42(3): 581-594. |
[9] | 曲均浩, 王长在, 刘方斌, 周少辉, 郑建常, 李新凤, 张芹. 乳山序列地震分布与震源区速度结构的关系[J]. 地震地质, 2019, 41(1): 99-118. |
[10] | 田一鸣, 刘保金, 石金虎, 王晓谦, 酆少英, 李稳. 南阳盆地朱阳关-夏馆断裂的浅部特征及活动性[J]. 地震地质, 2018, 40(1): 87-96. |
[11] | 刘保金, 曲国胜, 孙铭心, 刘亢, 赵成彬, 徐锡伟, 酆少英, 寇昆朋. 唐山地震区地壳结构和构造:深地震反射剖面结果[J]. 地震地质, 2011, 33(4): 901-912. |
[12] | 刘保金, 杨晓平, 酆少英, 寇昆朋. 龙门山山前疑似汶川MS 8.0地震地表破裂的浅层地震反射调查[J]. 地震地质, 2008, 30(4): 906-916. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||