地震地质 ›› 2021, Vol. 43 ›› Issue (4): 936-957.DOI: 10.3969/j.issn.0253-4967.2021.04.013
谈洪波1,2)(), 王嘉沛2), 杨光亮2), 陈正松2), 吴桂桔2), 申重阳2), 黄金水1)
收稿日期:
2021-06-02
修回日期:
2021-06-23
出版日期:
2021-08-20
发布日期:
2021-09-29
作者简介:
谈洪波, 男, 1983年生, 2009年于中国地震局地震研究所获固体地球物理学专业硕士学位, 副研究员, 主要从事重力与地球动力学正反演研究, E-mail: thbhong@163.com。
基金资助:
TAN Hong-bo1,2)(), WANG Jia-pei2), YANG Guang-liang2), CHEN Zheng-song2), WU Gui-ju2), SHEN Chong-yang2), HUANG Jin-shui1)
Received:
2021-06-02
Revised:
2021-06-23
Online:
2021-08-20
Published:
2021-09-29
摘要:
文中基于矩形位错理论及USGS发布的断层模型, 结合研究区地壳-上地幔平均波速分层结构, 模拟计算了弹性-黏弹分层半空间中2021年玛多MS7.4地震产生的同震及震后地表形变和重力变化。 经分析发现, 同震形变和重力变化显示发震断层具有左旋走滑兼正断错动的综合特征, 其变化主要发生于断层在地表投影周边50km的范围内, 向断层两侧快速衰减, 向E最大水平位移量>1 000mm, 向N最大位移量达570mm, 垂直位移近750mm, 重力变化达150μGal; 远震区(与断层的距离>150km)的水平位移量值一般<10mm, 向外衰减较慢; 而垂直位移和重力变化图像呈现一定的负相关, 呈蝴蝶状的正负四象限对称分布, 向外衰减的速率明显强于水平形变, 变化量值一般<2mm和<1μGal。 震后效应随时间的推移逐步显现并持续增强, 其图像变化形态与同震类似, 表现出明显的继承性增强趋势; 震后黏弹性松弛效应的影响范围远大于同震, 震后400a间其影响量值在近场区一般≤同震的2倍, 但远场区均>3倍; 震后400a间黏弹性松弛对水平位移、 垂直位移和重力变化的影响可达100mm、 130mm和30μGal; 同震效应的极值区域主要集中在断层两侧, 且离断层越近量值越大, 而震后黏弹性松弛效应的极值区分布于离断层两侧约50km处, 两者并不重合; 震后水平位移主要表现为持续单调增强, 而垂直位移和重力震后的变化则相对复杂: 近场区在震后5a内呈现相对同震的继承性增强, 随后反向调整, 而远场区则相反, 先反向调整, 后呈继承性增强; 水平位移在100a后基本稳定不变, 而黏弹性松弛效应对垂直位移和重力变化的影响会持续到震后300a。 与GNSS实测结果对比后发现, 两者在运动方向和量级大小上基本一致, 远场符合更好, 这可能与断层模型的分辨率有关。 文中研究可为利用实际形变和重力资料解释此次地震的孕震过程研究提供理论依据。
中图分类号:
谈洪波, 王嘉沛, 杨光亮, 陈正松, 吴桂桔, 申重阳, 黄金水. 2021年玛多MS7.4地震的震后效应模拟[J]. 地震地质, 2021, 43(4): 936-957.
TAN Hong-bo, WANG Jia-pei, YANG Guang-liang, CHEN Zheng-song, WU Gui-ju, SHEN Chong-yang, HUANG Jin-shui. SIMULATION OF POST-SEISMIC EFFECTS OF THE MADUO MS7.4 EARTHQUAKE IN 2021[J]. SEISMOLOGY AND EGOLOGY, 2021, 43(4): 936-957.
分层 | h/km | VP/km·s-1 | VS/km·s-1 | ρ/kg·m-3 | η/Pa·s |
---|---|---|---|---|---|
上地壳 | 0.0~28.0 | 6.03 | 3.53 | 2.726×103 | ∞ |
中地壳 | 28.0~44.4 | 6.30 | 3.67 | 2.788×103 | ∞ |
下地壳 | 44.4~58.2 | 6.72 | 3.873 | 2.881×103 | 1.5×1018 |
上地幔 | 58.2~ | 8.17 | 4.53 | 3.364×103 | 1.5×1019 |
表1 地壳-上地幔介质分层结构模型
Table1 The layered structure of the crust-upper-mantle based on Crust 1.0
分层 | h/km | VP/km·s-1 | VS/km·s-1 | ρ/kg·m-3 | η/Pa·s |
---|---|---|---|---|---|
上地壳 | 0.0~28.0 | 6.03 | 3.53 | 2.726×103 | ∞ |
中地壳 | 28.0~44.4 | 6.30 | 3.67 | 2.788×103 | ∞ |
下地壳 | 44.4~58.2 | 6.72 | 3.873 | 2.881×103 | 1.5×1018 |
上地幔 | 58.2~ | 8.17 | 4.53 | 3.364×103 | 1.5×1019 |
图6 地表震后黏弹性松弛效应 已扣除同震影响, 从左到右依次为经度方向位移、 纬度方向位移、 垂向位移和重力变化, 从上到下依次为震后1a、 5a、 10a、 50a、 100a、 200a、 400a的结果
Fig. 6 Simulation of the surface viscoelastic relaxation effects after the earthquake.
点位 | 德令哈(37.369°N, 97.356°E) | 囊谦(32.208°N, 96.477°E) | 阿坝(32.899°N, 101.706°E) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
位移/mm | 重力 变化 /μGal | 位移/mm | 重力 变化 /μGal | 位移/mm | 重力 变化 /μGal | |||||||
经度 方向 | 纬度 方向 | 垂向 | 经度 方向 | 纬度 方向 | 垂向 | 经度 方向 | 纬度 方向 | 垂向 | ||||
同震 | -1.8 | 3.2 | -0.9 | 0.32 | 2.0 | 1.3 | 1.0 | -0.32 | 2.0 | -2.1 | -0.8 | 0.26 |
1a | -2.0 | 3.8 | -0.9 | 0.31 | 2.2 | 1.6 | 1.0 | -0.32 | 2.4 | -2.4 | -0.7 | 0.25 |
2a | -2.2 | 4.6 | -0.8 | 0.30 | 2.5 | 2.1 | 1.0 | -0.32 | 3.0 | -2.7 | -0.7 | 0.25 |
3a | -2.4 | 5.3 | -0.8 | 0.30 | 2.9 | 2.6 | 0.9 | -0.32 | 3.5 | -3.0 | -0.7 | 0.25 |
5a | -2.9 | 6.8 | -0.7 | 0.28 | 3.5 | 3.4 | 0.9 | -0.32 | 4.5 | -3.7 | -0.6 | 0.24 |
10a | -4.0 | 10.0 | -0.5 | 0.26 | 5.1 | 5.2 | 0.8 | -0.31 | 6.8 | -5.2 | -0.4 | 0.22 |
20a | -6.2 | 14.8 | -0.3 | 0.23 | 8.0 | 7.8 | 0.7 | -0.31 | 10.3 | -8.1 | -0.3 | 0.20 |
30a | -8.2 | 18.1 | -0.3 | 0.24 | 10.4 | 9.4 | 0.7 | -0.32 | 12.7 | -10.5 | -0.3 | 0.20 |
50a | -11.2 | 21.8 | -0.6 | 0.28 | 13.7 | 10.9 | 1.0 | -0.37 | 15.3 | -14.0 | -0.5 | 0.23 |
100a | -14.8 | 25.0 | -1.5 | 0.42 | 17.4 | 11.9 | 1.7 | -0.50 | 17.4 | -18.2 | -1.1 | 0.33 |
150a | -16.2 | 25.7 | -2.3 | 0.55 | 18.6 | 11.9 | 2.4 | -0.63 | 17.8 | -19.9 | -1.6 | 0.40 |
200a | -16.8 | 25.8 | -3.0 | 0.68 | 19.2 | 11.8 | 3.0 | -0.74 | 17.9 | -20.6 | -2.0 | 0.47 |
250a | -17.1 | 25.7 | -3.7 | 0.80 | 19.4 | 11.6 | 3.6 | -0.84 | 17.8 | -21.0 | -2.3 | 0.53 |
300a | -17.3 | 25.6 | -4.4 | 0.92 | 19.6 | 11.5 | 4.1 | -0.93 | 17.7 | -21.2 | -2.7 | 0.58 |
350a | -17.4 | 25.4 | -5.1 | 1.03 | 19.7 | 11.3 | 4.5 | -1.00 | 17.6 | -21.3 | -3.0 | 0.64 |
400a | -17.5 | 25.2 | -5.6 | 1.13 | 19.8 | 11.2 | 4.9 | -1.07 | 17.5 | -21.3 | -3.3 | 0.68 |
点位 | 玛多(34.916°N, 98.209°E) | 称多(33.360°N, 97.104°E) | 达日(33.750°N, 99.625°E) | |||||||||
位移/mm | 重力 变化 /μGal | 位移/mm | 重力 变化 /μGal | 位移/mm | 重力 变化 /μGal | |||||||
经度 方向 | 纬度 方向 | 垂向 | 经度 方向 | 纬度 方向 | 垂向 | 经度 方向 | 纬度 方向 | 垂向 | ||||
同震 | -125.6 | 150.5 | -3.0 | 4.98 | 8.3 | 6.4 | 3.0 | -1.08 | 20.0 | -23.2 | -4.4 | 2.01 |
1a | -129.6 | 153.1 | -3.6 | 5.08 | 9.3 | 7.4 | 2.9 | -1.06 | 22.2 | -25.1 | -4.0 | 1.96 |
2a | -134.8 | 156.6 | -4.4 | 5.22 | 10.7 | 8.8 | 2.7 | -1.04 | 25.1 | -27.8 | -3.6 | 1.90 |
3a | -139.0 | 159.4 | -4.9 | 5.31 | 12.1 | 9.9 | 2.5 | -1.02 | 27.5 | -30.1 | -3.4 | 1.87 |
5a | -145.5 | 163.7 | -5.6 | 5.42 | 14.5 | 11.9 | 2.4 | -1.00 | 31.3 | -33.9 | -3.3 | 1.85 |
10a | -155.8 | 170.7 | -5.5 | 5.39 | 19.5 | 15.3 | 2.3 | -1.02 | 37.5 | -41.0 | -4.2 | 2.02 |
20a | -165.9 | 177.9 | -2.8 | 4.86 | 26.0 | 18.6 | 3.2 | -1.20 | 42.7 | -48.9 | -8.2 | 2.77 |
30a | -171.4 | 181.9 | 0.6 | 4.20 | 29.6 | 19.9 | 4.5 | -1.45 | 44.4 | -52.9 | -12.8 | 3.63 |
50a | -178.0 | 186.9 | 7.4 | 2.93 | 33.2 | 20.6 | 7.5 | -2.00 | 44.8 | -56.7 | -21.5 | 5.25 |
100a | -186.4 | 192.6 | 20.5 | 0.48 | 36.1 | 20.1 | 14.2 | -3.24 | 43.9 | -60.5 | -37.9 | 8.32 |
150a | -190.6 | 195.0 | 29.2 | -1.14 | 37.1 | 19.3 | 19.4 | -4.20 | 43.5 | -62.8 | -48.5 | 10.31 |
200a | -193.0 | 196.3 | 35.2 | -2.25 | 37.8 | 18.8 | 23.4 | -4.93 | 43.5 | -64.6 | -55.5 | 11.61 |
250a | -194.5 | 197.1 | 39.4 | -3.04 | 38.2 | 18.4 | 26.4 | -5.48 | 43.6 | -66.0 | -60.2 | 12.49 |
300a | -195.5 | 197.6 | 42.5 | -3.61 | 38.5 | 18.1 | 28.6 | -5.90 | 43.8 | -67.1 | -63.4 | 13.09 |
350a | -196.2 | 197.9 | 44.8 | -4.03 | 38.8 | 17.9 | 30.4 | -6.22 | 44.0 | -68.0 | -65.7 | 13.51 |
400a | -196.7 | 198.2 | 46.5 | -4.35 | 39.0 | 17.7 | 31.7 | -6.47 | 44.1 | -68.6 | -67.3 | 13.82 |
表2 部分县城位置的震后效应
Table2 The post-seismic effects on some of the cities
点位 | 德令哈(37.369°N, 97.356°E) | 囊谦(32.208°N, 96.477°E) | 阿坝(32.899°N, 101.706°E) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
位移/mm | 重力 变化 /μGal | 位移/mm | 重力 变化 /μGal | 位移/mm | 重力 变化 /μGal | |||||||
经度 方向 | 纬度 方向 | 垂向 | 经度 方向 | 纬度 方向 | 垂向 | 经度 方向 | 纬度 方向 | 垂向 | ||||
同震 | -1.8 | 3.2 | -0.9 | 0.32 | 2.0 | 1.3 | 1.0 | -0.32 | 2.0 | -2.1 | -0.8 | 0.26 |
1a | -2.0 | 3.8 | -0.9 | 0.31 | 2.2 | 1.6 | 1.0 | -0.32 | 2.4 | -2.4 | -0.7 | 0.25 |
2a | -2.2 | 4.6 | -0.8 | 0.30 | 2.5 | 2.1 | 1.0 | -0.32 | 3.0 | -2.7 | -0.7 | 0.25 |
3a | -2.4 | 5.3 | -0.8 | 0.30 | 2.9 | 2.6 | 0.9 | -0.32 | 3.5 | -3.0 | -0.7 | 0.25 |
5a | -2.9 | 6.8 | -0.7 | 0.28 | 3.5 | 3.4 | 0.9 | -0.32 | 4.5 | -3.7 | -0.6 | 0.24 |
10a | -4.0 | 10.0 | -0.5 | 0.26 | 5.1 | 5.2 | 0.8 | -0.31 | 6.8 | -5.2 | -0.4 | 0.22 |
20a | -6.2 | 14.8 | -0.3 | 0.23 | 8.0 | 7.8 | 0.7 | -0.31 | 10.3 | -8.1 | -0.3 | 0.20 |
30a | -8.2 | 18.1 | -0.3 | 0.24 | 10.4 | 9.4 | 0.7 | -0.32 | 12.7 | -10.5 | -0.3 | 0.20 |
50a | -11.2 | 21.8 | -0.6 | 0.28 | 13.7 | 10.9 | 1.0 | -0.37 | 15.3 | -14.0 | -0.5 | 0.23 |
100a | -14.8 | 25.0 | -1.5 | 0.42 | 17.4 | 11.9 | 1.7 | -0.50 | 17.4 | -18.2 | -1.1 | 0.33 |
150a | -16.2 | 25.7 | -2.3 | 0.55 | 18.6 | 11.9 | 2.4 | -0.63 | 17.8 | -19.9 | -1.6 | 0.40 |
200a | -16.8 | 25.8 | -3.0 | 0.68 | 19.2 | 11.8 | 3.0 | -0.74 | 17.9 | -20.6 | -2.0 | 0.47 |
250a | -17.1 | 25.7 | -3.7 | 0.80 | 19.4 | 11.6 | 3.6 | -0.84 | 17.8 | -21.0 | -2.3 | 0.53 |
300a | -17.3 | 25.6 | -4.4 | 0.92 | 19.6 | 11.5 | 4.1 | -0.93 | 17.7 | -21.2 | -2.7 | 0.58 |
350a | -17.4 | 25.4 | -5.1 | 1.03 | 19.7 | 11.3 | 4.5 | -1.00 | 17.6 | -21.3 | -3.0 | 0.64 |
400a | -17.5 | 25.2 | -5.6 | 1.13 | 19.8 | 11.2 | 4.9 | -1.07 | 17.5 | -21.3 | -3.3 | 0.68 |
点位 | 玛多(34.916°N, 98.209°E) | 称多(33.360°N, 97.104°E) | 达日(33.750°N, 99.625°E) | |||||||||
位移/mm | 重力 变化 /μGal | 位移/mm | 重力 变化 /μGal | 位移/mm | 重力 变化 /μGal | |||||||
经度 方向 | 纬度 方向 | 垂向 | 经度 方向 | 纬度 方向 | 垂向 | 经度 方向 | 纬度 方向 | 垂向 | ||||
同震 | -125.6 | 150.5 | -3.0 | 4.98 | 8.3 | 6.4 | 3.0 | -1.08 | 20.0 | -23.2 | -4.4 | 2.01 |
1a | -129.6 | 153.1 | -3.6 | 5.08 | 9.3 | 7.4 | 2.9 | -1.06 | 22.2 | -25.1 | -4.0 | 1.96 |
2a | -134.8 | 156.6 | -4.4 | 5.22 | 10.7 | 8.8 | 2.7 | -1.04 | 25.1 | -27.8 | -3.6 | 1.90 |
3a | -139.0 | 159.4 | -4.9 | 5.31 | 12.1 | 9.9 | 2.5 | -1.02 | 27.5 | -30.1 | -3.4 | 1.87 |
5a | -145.5 | 163.7 | -5.6 | 5.42 | 14.5 | 11.9 | 2.4 | -1.00 | 31.3 | -33.9 | -3.3 | 1.85 |
10a | -155.8 | 170.7 | -5.5 | 5.39 | 19.5 | 15.3 | 2.3 | -1.02 | 37.5 | -41.0 | -4.2 | 2.02 |
20a | -165.9 | 177.9 | -2.8 | 4.86 | 26.0 | 18.6 | 3.2 | -1.20 | 42.7 | -48.9 | -8.2 | 2.77 |
30a | -171.4 | 181.9 | 0.6 | 4.20 | 29.6 | 19.9 | 4.5 | -1.45 | 44.4 | -52.9 | -12.8 | 3.63 |
50a | -178.0 | 186.9 | 7.4 | 2.93 | 33.2 | 20.6 | 7.5 | -2.00 | 44.8 | -56.7 | -21.5 | 5.25 |
100a | -186.4 | 192.6 | 20.5 | 0.48 | 36.1 | 20.1 | 14.2 | -3.24 | 43.9 | -60.5 | -37.9 | 8.32 |
150a | -190.6 | 195.0 | 29.2 | -1.14 | 37.1 | 19.3 | 19.4 | -4.20 | 43.5 | -62.8 | -48.5 | 10.31 |
200a | -193.0 | 196.3 | 35.2 | -2.25 | 37.8 | 18.8 | 23.4 | -4.93 | 43.5 | -64.6 | -55.5 | 11.61 |
250a | -194.5 | 197.1 | 39.4 | -3.04 | 38.2 | 18.4 | 26.4 | -5.48 | 43.6 | -66.0 | -60.2 | 12.49 |
300a | -195.5 | 197.6 | 42.5 | -3.61 | 38.5 | 18.1 | 28.6 | -5.90 | 43.8 | -67.1 | -63.4 | 13.09 |
350a | -196.2 | 197.9 | 44.8 | -4.03 | 38.8 | 17.9 | 30.4 | -6.22 | 44.0 | -68.0 | -65.7 | 13.51 |
400a | -196.7 | 198.2 | 46.5 | -4.35 | 39.0 | 17.7 | 31.7 | -6.47 | 44.1 | -68.6 | -67.3 | 13.82 |
图8 震后400a间的黏弹性松弛效应与同震效应比值分布 a 经度方向位移; b 纬度方向位移; c 垂向位移; d 重力变化
Fig. 8 The distribution of the ratios between the viscoelastic relaxation effects during 400 years after the Maduo earthquake and the coseismic effects.
图9 震后5a间的黏弹性松弛效应与同震效应比值分布 a 经度方向位移; b 纬度方向位移; c 垂向位移; d 重力变化
Fig. 9 The distribution of the ratios between the viscoelastic relaxation effects during 5 years after the Maduo earthquake and the coseismic effects.
[1] | 戴华光. 1983. 1947年青海达日M7地震[J]. 西北地震学报, 5(3): 71-77. |
DAI Hua-guang. 1983. On the Dari earthquake of 1974 in Qinghai Province[J]. Northwestern Seismological Journal, 5(3): 71-77. (in Chinese) | |
[2] |
贺鹏超, 王敏, 王琪, 等. 2018. 基于2001年MW7.8可可西里地震震后形变模拟研究藏北地区岩石圈流变学结构[J]. 地球物理学报, 61(2): 531-544. doi: 10.6038/cjg2018L0189.
DOI |
HE Peng-chao, WANG Min, WANG Qi, et al. 2018. Rheological structure of lithosphere in northern Tibet inferred from post-seismic deformation modeling of the 2001 MW7.8 Kokoxili earthquake[J]. Chinese Journal of Geophysics, 61(2): 531-544. (in Chinese) | |
[3] |
李陈侠, 徐锡伟, 闻学泽, 等. 2011. 东昆仑断裂带中东部地震破裂分段性与走滑运动分解作用[J]. 中国科学(D辑), 41(9): 1295-1310. doi: 10.1007/s11430-011-4239-5.
DOI |
LI Chen-xia, XU Xi-wei, WEN Xue-ze, et al. 2011. Rupture segmentation and slip portioning of the mid-eastern part of the Kunlun Fault, north Tibetan plateau[J]. Science in China(Ser D), 41(9): 1295-1310. (in Chinese) | |
[4] | 李传友, 宋方敏, 冉勇康. 2004. 龙门山断裂带北段晚第四纪活动性讨论[J]. 地震地质, 26(2): 248-258. |
LI Chuan-you, SONG Fang-min, RAN Yong-kang. 2004. Late Quaternary activity and age constraint of the northern Longmenshan fault zone[J]. Seismology and Geology, 26(2): 248-258. (in Chinese) | |
[5] |
梁明剑, 杨耀, 杜方, 等. 2020. 青海达日断裂中段晚第四纪活动性与1947年M7.75地震地表破裂带再研究[J]. 地震地质, 42(3): 703-714. doi: 10.3969/j.issn.0253-4967.2020.03.011.
DOI |
LIANG Ming-jian, YANG Yao, DU Fang, et al. 2020. Late Quaternary activity of the central segment of the Dari Fault and restudy of the surface rupture zone of the 1947 M7.75 Dari earthquake, Qinghai Province[J]. Seismology and Geology, 42(3): 703-714. (in Chinese) | |
[6] |
梁明剑, 周荣军, 闫亮, 等. 2014. 青海达日断裂中段构造活动与地貌发育的响应关系探讨[J]. 地震地质, 36(1): 28-38. doi: 10.3969/j.issn.0253-4967.2014.01.003.
DOI |
LIANG Ming-jian, ZHOU Rong-jun, YAN Liang, et al. 2014. The relationships between neotectonic activity of the middle segment of Dari Fault and its geomorphological response, Qinghai Province, China[J]. Seismology and Geology, 36(1): 28-38. (in Chinese) | |
[7] |
刘刚, 王琪, 乔学军, 等. 2015. 用连续GPS与远震体波联合反演2015年尼泊尔中部MS8.1地震破裂过程[J]. 地球物理学报, 58(11): 4287-4297. doi: 10.6038/cjg20151133.
DOI |
LIU Gang, WANG Qi, QIAO Xue-jun, et al. 2015. The 25 April 2015 Nepal MS81 earthquake slip distribution from joint inversion of teleseismic, static and high-rate GPS data[J]. Chinese Journal of Geophysics, 58(11): 4287-4297. (in Chinese) | |
[8] | 青海省地震局, 中国地震局地壳应力研究所. 1999. 东昆仑活动断裂带[M]. 北京: 地震出版社:157-164. |
Qinghai Earthquake Administration, Institute of Crustal Dynamics, China Earthquake Administration. 1999. East Kunlun Active Fault Zone[M]. Seismological Press, Beijing:157-164. (in Chinese) | |
[9] | 任金卫, 汪一鹏, 吴章明, 等. 1999. 青藏高原北部东昆仑断裂带第四纪活动特征和滑动速率 [G]//中国地震局地质研究所编编. 活动断裂研究. 北京: 地震出版社:147-163. |
REN Jin-wei, WANG Yi-peng, WU Zhang-ming, et al. 1999. Quaternary activity characteristics and slip rate of the East Kunlun fault zone in the northern Qinghai-Tibet Plateau [G]// Institute of Geology, China Earthquake Administration. Research on Active Faults. Seismological Press, Beijing:147-163. (in Chinese) | |
[10] | 申重阳, 祝意青, 胡敏章, 等. 2020. 中国大陆重力场时变监测与强震预测[J]. 中国地震, 36(4): 729-743. |
SHEN Chong-yang, ZHU Yi-qing, HU Min-zhang, et al. 2020. Time-varying gravity field monitoring and strong earthquake prediction on the Chinese mainland[J]. Earthquake Research in China, 36(4): 729-743. (in Chinese) | |
[11] | 孙文科. 2008. 地震火山活动产生重力变化的理论与观测研究的进展及现状[J]. 大地测量与地球动力学, 28(4): 44-53. |
SUN Wen-ke. 2008. Progress and current situation of research on theory and observation of gravity change caused by seismicity and volcanism[J]. Journal of Geodesy and Geodynamics, 28(4): 44-53. (in Chinese) | |
[12] | 谈洪波, 申重阳, 李辉. 2008. 断层位错引起的地表重力变化特征研究[J]. 大地测量与地球动力学, 28(4): 54-62. |
TAN Hong-bo, SHEN Chong-yang, LI Hui. 2008. Characteristics of surface gravity changes caused by a fault or faults dislocation[J]. Journal of Geodesy and Geodynamics, 28(4): 54-62. (in Chinese) | |
[13] | 谈洪波, 申重阳, 李辉, 等. 2009. 断层位错引起的地表形变特征[J]. 大地测量与地球动力学, 29(3): 42-49. |
TAN Hong-bo, SHEN Chong-yang, LI Hui, et al. 2009. Characteristics of surface deformation caused by fault dislocation[J]. Journal of Geodesy and Geodynamics, 29(3): 42-49. (in Chinese) | |
[14] | 谈洪波, 申重阳, 邢乐林, 等. 2013. 玉树MS7.1地震同震效应模拟与绝对重力检验[J]. 中国地震, 29(1): 116-123. |
TAN Hong-bo, SHEN Chong-yang, XING Le-lin, et al. 2013. Coseismic effect simulation of the Yushu MS7.1 earthquake and absolute gravity inspection[J]. Earthquake Research in China, 29(1): 116-123. (in Chinese) | |
[15] | 谈洪波, 申重阳, 玄松柏. 2010. 地壳分层和地壳厚度对汶川地震同震效应的影响[J]. 大地测量与地球动力学, 30(4): 29-35. |
TAN Hong-bo, SHEN Chong-yang, XUAN Song-bai. 2010. Influence of crust layering and thickness on coseismic effects of Wenchuan earthquake[J]. Journal of Geodesy and Geodynamics, 30(4): 29-35. (in Chinese) | |
[16] |
隗寿春, 祝意青, 赵云峰, 等. 2020. 呼图壁MS6.2地震前后重力变化特征分析[J]. 地震地质, 42(4): 923-935. doi: 10.3969/j.issn.0253-4967.2020.04.010.
DOI |
WEI Shou-chun, ZHU Yi-qing, ZHAO Yun-feng, et al. 2020. Study on characteristics of gravity variation before and after Hutubi MS6.2 earthquake[J]. Seismology and Geology, 42(4): 923-935. (in Chinese) | |
[17] | 闻学泽, 徐锡伟, 郑荣章, 等. 2003. 甘孜-玉树断裂的平均滑动速率与近代大地震破裂[J]. 中国科学(D辑), 33(S1): 199-208. |
WEN Xue-ze, XU Xi-wei, ZHENG Rong-zhang, et al. 2003. The average slip rate of the Ganzi-Yushu Fault and the rupture area of large earthquakes in modern times[J]. Science in China(Ser D), 33(S1): 199-208. (in Chinese) | |
[18] | 熊仁伟, 任金卫, 张军龙, 等. 2010. 玛多-甘德断裂甘德段晚第四纪活动特征[J]. 地震, 30(4): 65-73. |
XIONG Ren-wei, REN Jin-wei, ZHANG Jun-long, et al. 2010. Late Quaternary active characteristics of the Gande segment in the Maduo-Gande fault zone[J]. Earthquake, 30(4): 65-73. (in Chinese) | |
[19] | 张晁军, 曹建玲, 石耀霖. 2008. 从震后形变探讨青藏高原下地壳黏滞系数[J]. 中国科学(D辑), 38(10): 1250-1257. |
ZHANG Chao-jun, CAO Jian-ling, SHI Yao-lin. 2008. Discussion on the viscosity coefficient of the lower crust of the Qinghai-Tibet Plateau from post-earthquake deformation[J]. Science in China(Ser D), 38(10): 1250-1257. (in Chinese) | |
[20] | 张裕明, 李闽峰, 孟勇琦, 等. 1996. 巴颜喀拉山地区断层活动性研究及其地震地质意义 [G]//国家地震局地质研究所编编. 活动断裂研究. 北京: 地震出版社:154-171. |
ZHANG Yu-ming, LI Min-feng, MENG Yong-qi, et al. 1996. Research on fault activities and their seismogeological implication in Bayankala mountain area [G]// Institute of Geology, China Earthquake Administration. Research on Active Faults. Seismological Press, Beijing:154-171. (in Chinese) | |
[21] | 赵斌, 王敏, 胡岩, 等. 2020. 中国及邻域强震震后变形监测及岩石流变性质研究[J]. 中国地震, 36(4): 806-816. |
ZHAO Bin, WANG Min, HU Yan, et al. 2020. Rock rheology and observation of postseismic deformation following strong earthquake in China and its surrounding region[J]. Earthquake Research in China, 36(4): 806-816. (in Chinese) | |
[22] |
祝意青, 刘芳, 李铁明, 等. 2015. 川滇地区重力场动态变化及其强震危险含义[J]. 地球物理学报, 58(11): 4187-4196. doi: 10.6038/cjg20151125.
DOI |
ZHU Yi-qing, LIU Fang, LI Tie-ming, et al. 2015. Dynamic variation of the gravity field in the Sichuan-Yunnan region and its implication for seismic risk[J]. Chinese Journal of Geophysics, 58(11): 4187-4196. (in Chinese) | |
[23] |
Feng W, Lindsey E, Barbot S, et al. 2017. Source characteristics of the 2015 MW7.8 Gorkha(Nepal)earthquake and its MW7.2 aftershock from space geodesy[J]. Tectonophysics, 713(8): 747-758. doi: 10.1016/j.tecto.2016.02.029.
DOI |
[24] | Fung Y C. 1965. Foundations of Solid Mechanics[M]. Prentice Hall, Englewood Cliffs, NJ:525. |
[25] |
Haskell N A. 1953. The dispersion of surface waves on multilayered media[J]. Bulletin of the Seismological Society of America, 43(1): 17-34.
DOI URL |
[26] |
Kind R, Seidl D. 1982. Analysis of broadband seismograms from the Chile-Peru area[J]. Bulletin of the Seismological Society of America, 72(6A): 2131-2145.
DOI URL |
[27] |
Longman I M. 1963. A Green’s function for determining the deformation of the Earth under surface loads Ⅱ: Computations and numerical results[J]. Journal of Geophysical Research, 68(2): 485-496.
DOI URL |
[28] |
Matsuura M, Tanimoto T, Iwasaki T. 1981. Quasi-static displacements due to faulting in a layered half-space with an intervenient viscoelastic layer[J]. Journal of Physics of the Earth, 29(1): 23-54.
DOI URL |
[29] |
Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75(4): 1135-1154.
DOI URL |
[30] |
Okubo S. 1992. Gravity and potential changes due to shear and tensile faults in a half-space[J]. Journal of Geophysical Research, 97(B5): 7137-7144.
DOI URL |
[31] |
Pollitz F F. 1996. Coseismic deformation from earthquake faulting in a layered spherical Earth[J]. Geophysical Journal International, 125(1): 1-4.
DOI URL |
[32] |
Riguzzi F, Tan H, Shen C. 2019. Surface volume and gravity changes due to significant earthquakes occurred in central Italy from 2009 to 2016 [J]. International Journal of Earth Sciences. 108(6): 2047-2056. doi: 10.1007/s00531-019-01748-0.
DOI URL |
[33] |
Rundle J B. 1980. Static elastic-gravitational deformation of a layered half space by point couple sources[J]. Journal of Geophysical Research, 85(B10): 5355-5363.
DOI URL |
[34] | Sun W, Okubo S. 2002. Effects of the earth’s spherical curvature and radial heterogeneity in dislocation studies for a point dislocation[J]. Geophysical Research Letters, 29(12): 461-464. |
[35] |
Wang H. 1999. Surface vertical displacements, potential perturbations and gravity changes of a viscoelastic earth model induced by internal point dislocations[J]. Geophysical Journal International, 137(2): 429-440.
DOI URL |
[36] |
Wang R, Lorenzo-Martin F, Roth F. 2006. PSGRN/PSCMP: A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers and Geosciences, 32(4): 527-541.
DOI URL |
[37] |
Zhang R, Wang R, Zschau J, et al. 2014. Automatic imaging of earthquake rupture processes by iterative deconvolution and stacking of high-rate GPS and strong motion seismograms[J]. Journal of Geophysical Research: Solid Earth, 119(7): 5633-5650. doi: /10.1002/2013JB010469.
DOI URL |
[38] |
Zhang X, Okubo S, Tanaka Y, et al. 2016. Coseismic gravity and displacement changes of Japan Tohoku earthquake(MW9.0)[J]. Geodesy and Geodynamics, 7(2): 95-100. doi: 10.1016/j.geog.2015.10.002.
DOI URL |
[1] | 汪健, 张新林, 谈洪波, 胡敏章, 吴桂桔, 李忠亚, 张明辉. 木兰山重力基线场的初值测定及重力变化分析[J]. 地震地质, 2023, 45(2): 553-569. |
[2] | 赵德政, 屈春燕, 张桂芳, 龚文瑜, 单新建, 朱传华, 张国宏, 宋小刚. 基于InSAR技术的同震形变获取、地震应急监测和发震构造研究应用进展[J]. 地震地质, 2023, 45(2): 570-592. |
[3] | 于书媛, 张国宏, 张迎峰, 丁娟, 张建龙, 范晓冉, 王绍俊. InSAR数据约束的2021年西藏比如MW5.8地震同震滑动分布及库仑应力变化[J]. 地震地质, 2022, 44(5): 1190-1202. |
[4] | 邓文泽, 刘杰, 杨志高, 孙丽, 张雪梅. 青海玛多MS7.4地震震源破裂过程反演结果的初步分析[J]. 地震地质, 2022, 44(4): 1059-1070. |
[5] | 魏延坤, 陈晓利. 不同地震滑坡危险性评价方法的适用性探讨——以玛多MS7.4地震为例[J]. 地震地质, 2022, 44(3): 590-603. |
[6] | 解滔, 于晨, 王亚丽, 李美, 王中平, 姚丽, 卢军. 2013年岷县-漳县 MS6.6 地震前通渭台的视电阻率变化[J]. 地震地质, 2022, 44(3): 701-717. |
[7] | 王雨晴, 冯万鹏, 张培震. 交角约90°共轭断裂的现今形变及对构造应力场的指示意义——以2019年MW≥6.4菲律宾地震序列为例[J]. 地震地质, 2022, 44(2): 313-332. |
[8] | 刘小利, 夏涛, 刘静, 姚文倩, 徐晶, 邓德贝尔, 韩龙飞, 贾治革, 邵延秀, 王焱, 乐子扬, 高天琪. 2021年青海玛多MW7.4地震分布式同震地表裂缝特征[J]. 地震地质, 2022, 44(2): 461-483. |
[9] | 韩龙飞, 刘静, 姚文倩, 王文鑫, 刘小利, 高云鹏, 邵延秀, 李金阳. 2021年玛多MW7.4地震震中区地表破裂的精细填图及阶区内的分布式破裂讨论[J]. 地震地质, 2022, 44(2): 484-505. |
[10] | 邵延秀, 刘静, 高云鹏, 王文鑫, 姚文倩, 韩龙飞, 刘志军, 邹小波, 王焱, 李云帅, 刘璐. 同震地表破裂的位移测量与弥散变形分析——以2021年青海玛多MW7.4地震为例[J]. 地震地质, 2022, 44(2): 506-523. |
[11] | 姚文倩, 王子君, 刘静, 刘小利, 韩龙飞, 邵延秀, 王文鑫, 徐晶, 秦可心, 高云鹏, 王焱, 李金阳, 曾宪阳. 2021年青海玛多MW7.4地震同震地表破裂长度的讨论[J]. 地震地质, 2022, 44(2): 541-559. |
[12] | 黄帅堂, 常想德, 马建, 胡伟华, 任静, 刘建明, 张文秀, 赖爱京. 天山北麓库松木契克山山前断裂东段断层陡坎研究[J]. 地震地质, 2022, 44(1): 20-34. |
[13] | 徐芳, 鲁人齐, 王帅, 江国焰, 龙锋, 王晓山, 苏鹏, 刘冠伸. 基于多元约束方法的2020年四川青白江MS5.1地震构造研究[J]. 地震地质, 2022, 44(1): 220-237. |
[14] | 李占飞, 徐锡伟, 孟勇琦, 赵帅, 孙佳珺, 程佳, 李康, 康文君. 基于“吉林一号”高精度遥感数据研究华北地区最新构造变形样式——以夏垫断裂1679年三河-平谷地震地表破裂为例[J]. 地震地质, 2022, 44(1): 98-114. |
[15] | 郭树松, 祝意青, 徐云马, 刘芳, 赵云峰, 张国庆, 朱辉. 汶川地震前失稳过程的重力场观测证据[J]. 地震地质, 2021, 43(6): 1368-1380. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||