[1] 边银菊, 邹立晔. 2002. 学习向量量化在地震和爆破识别中的应用[J]. 地震地磁观测与研究, 23(1): 10—15. BIAN Yin-ju, ZOU Li-ye. 2002. Application of Learning Vector Quantization(LVQ)to discriminating earthquakes and explosions[J]. Seismological and Geomagnetic Observation and Research, 23(1): 10—15(in Chinese). [2] 陈超, 齐峰. 2019. 卷积神经网络的发展及其在计算机视觉领域中的应用综述[J]. 计算机科学, 46(3): 63—73. CHEN Chao, QI Feng. 2019. Review on development of convolutional neural network and its application in computer vision[J]. Computer Science, 46(3): 63—73(in Chinese). [3] 陈润航, 黄汉明, 施佳朋, 等. 2019. 天然地震与人工爆破地震波形的实时分类研究[J]. 地球物理学进展, 34(1): 1—13. CHEN Run-hang, HUANG Han-ming, SHI Jia-peng, et al. 2019. Study on real-time identification of natural earthquake and artificial blasting seismic waveforms[J]. Progress in Geophysics, 34(1): 1—13(in Chinese). [4] 付超, 林年添, 张栋, 等. 2018. 多波地震深度学习的油气储层分布预测案例[J]. 地球物理学报, 61(1): 293—303. FU Chao, LIN Nian-tian, ZHANG Dong, et al. 2018. Prediction of reservoirs using multi-component seismic data and the deep learning method[J]. Chinese Journal of Geophysics, 61(1): 293—303(in Chinese). [5] 黄汉明, 边银菊, 卢世军, 等. 2010. 天然地震与人工爆破的波形小波特征研究[J]. 地震学报, 32(3): 270—276. HUANG Han-ming, BIAN Yin-ju, LU Shi-jun, et al. 2010. A wavelet feature research on seismic waveforms of earthquakes and explosions[J]. Acta Seismologica Sinica, 32(3): 270—276(in Chinese). [6] 贾佳, 王夫运, 吴庆举. 2019. 机器学习在地震检测与震相识别的应用综述[J]. 地震工程学报, 41(6): 1419—1425. JIA Jia, WANG Fu-yun, WU Qing-ju. 2019. Review of the application of machine learning in seismic detection and phase identification[J]. China Earthquake Engineering Journal, 41(6): 1419—1425(in Chinese). [7] 蒋一然, 宁杰远. 2019. 基于支持向量机的地震体波震相自动识别及到时自动拾取[J]. 地球物理学报, 62(1): 361—373. JIANG Yi-ran, NING Jie-yuan. 2019. Automatic detection of seismic body-wave phases and determination of their arrival times based on support vector machine[J]. Chinese Journal of Geophysics, 62(1): 361—373(in Chinese). [8] 孙瑜阳. 2018. 深度学习及其在图像分类识别中的研究综述[J]. 信息技术与信息化, 23(1): 138—140. SUN Yu-yang. 2018. A review of deep learning and its research in image classification and recognition[J]. Information Technology & Informatization, 23(1): 138—140(in Chinese). [9] 孙志军, 薛磊, 许阳明, 等. 2012. 深度学习研究综述[J]. 计算机应用研究, 29(8): 2806—2810. SUN Zhi-jun, XUE Lei, XU Yang-ming, et al. 2012. Overview of deep learning[J]. Application Research of Computers, 29(8): 2806—2810(in Chinese). [10] 田野. 2015. 不同震源类型的可视化识别研究 [D]. 桂林: 广西师范大学. TIAN Ye. 2015. Research on visual identifying distinct seismic sources [D]. Guangxi Normal University, Guilin(in Chinese). [11] 王军. 2018. 支持向量机在地震与爆破识别中的应用[J]. 地震地磁观测研究, 39(3): 181—188. WANG Jun. 2018. Application of SVM to discriminating earthquakes and explosions[J]. Seismological and Geomagnetic Observation and Research, 39(3): 181—188(in Chinese). [12] 张博. 2013. 爆炸和地震的识别研究 [D]. 北京: 中国地震局地球物理研究所. ZHANG Bo. 2013. Research on earthquake and explosions identification [D]. Institute of Geophysics, China Earthquake Administration, Beijing(in Chinese). [13] 赵明, 陈石, 房立华, 等. 2019. 基于U形卷积神经网络的震相识别与到时拾取方法研究[J]. 地球物理学报, 62(8): 3034—3042. ZHAO Ming, CHEN Shi, FANG Li-hua, et al. 2019. Earthquake phase arrival auto-picking based on U-shaped convolutional neural network[J]. Chinese Journal of Geophysics, 62(8): 3034—3042(in Chinese). [14] Bengio Y, Courville A, Vincent P. 2013. Representation learning: A review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8): 1798—1828. [15] Fah D, Koch K. 2002. Discrimination between earthquakes and chemical explosions by multivariate statistical analysis: A case study for Switzerland[J]. Bulletin of the Seismological Society of America, 92(5): 1795—1805. [16] Krizhevsky A, Sutskever I, Hinton G. 2012. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 25(2): 1097—1105. [17] LeCun Y, Bottou L, Bengio Y, et al. 1998. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86(11): 2278—2324. [18] LeCun Y, Boser B, Denker J S, et al. 2014. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1(4): 541—551. [19] Moyano L G. 2017. Learning network representations[J]. European Physical Journal Special Topics, 226(3): 499—518. [20] Perol T, Gharbi M, Denolle M. 2018. Convolutional neural network for earthquake detection and location[J]. Science Advances, 4(2): e1700578. [21] Ross Z E, Meier M A, Hauksson E. 2018. P-wave arrival picking and first-motion polarity determination with deep learning[J]. Journal of Geophysical Research: Solid Earth, 123(6): 5120—5129. [22] Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 9(4): 1542—1556. [23] Szegedy C, Liu W, Jia Y, et al. 2015. Going deeper with convolutions[J]. Access IEEE, 2(1): 1—9. |