地震地质 ›› 2021, Vol. 43 ›› Issue (3): 576-599.DOI: 10.3969/j.issn.0253-4967.2021.03.007
唐茂云1,2), 刘静3), 李翠平1), 王伟4), 张金玉4), 许强5)
收稿日期:
2020-04-28
修回日期:
2020-09-08
出版日期:
2021-06-20
发布日期:
2021-07-20
作者简介:
唐茂云, 男, 1990年生, 2015年于中国地震局地质研究所获构造地质学专业硕士学位, 工程师, 主要从事构造地貌、 微地震监测研究, E-mail: tmylzy@foxmail.com。
基金资助:
TANG Mao-yun1,2), LIU-ZENG Jing3), LI Cui-ping1), WANG Wei4), ZHANG Jin-yu4), XU Qiang5)
Received:
2020-04-28
Revised:
2020-09-08
Online:
2021-06-20
Published:
2021-07-20
摘要: 掌握青藏高原的高程演化历史对检验高原边界的变形机制和理解深部地球动力学具有重要意义。 文中对青藏高原东南缘的囊谦盆地、 贡觉盆地、 芒康盆地、 黎明-剑川-兰坪盆地、 洱源盆地、 怒河盆地和岔科-小龙潭盆地等不同区域的典型新生代盆地的古高度重建研究成果进行了系统梳理、 总结以及部分重新计算后, 恢复了青藏高原东南缘新生代隆升过程的时空分布历史, 讨论了青藏高原东南缘新生代期间的主要隆升阶段与幅度。 综合分析表明, 青藏高原东南缘北段—中段地区存在始新世—渐新世准高原, 而南段地区的地势相对较低。 中新世期间, 南段地区呈现出差异化的隆升趋势。 在此基础上, 文中进一步定量化约束了高原东南缘新生代的隆升过程, 为青藏高原东南缘构造、 地貌演化的动力学机制探讨提供制约。
中图分类号:
唐茂云, 刘静, 李翠平, 王伟, 张金玉, 许强. 青藏高原东南缘的新生代盆地古高度重建研究与进展[J]. 地震地质, 2021, 43(3): 576-599.
TANG Mao-yun, LIU-ZENG Jing, LI Cui-ping, WANG Wei, ZHANG Jin-yu, XU Qiang. PROGRESS AND RESEARCH OF PALEOALTITUDE RECON-STRUCTION OF CENOZOIC BASINS IN THE SOUTHEASTERN TIBET PLATEAU[J]. SEISMOLOGY AND GEOLOGY, 2021, 43(3): 576-599.
[1] 安芷生, 张培震, 王二七, 等. 2006. 中新世以来中国季风-干旱环境演化与青藏高原的生长[J]. 第四纪研究, 26(5): 678—693. AN Zhi-sheng, ZHANG Pei-zhen, WANG Er-qi, [2] 常承发. 1982. 青藏高原地质构造 [M]. 北京: 科学出版社. CHANG Cheng-fa. 1982. The Geological Structure of Tibet Plateau [M]. Science Press, Beijing(in Chinese). [3] 邓涛, 王世骐, 颉光普, 等. 2011. 藏北伦坡拉盆地丁青组哺乳动物化石对时代和古高度的指示[J]. 科学通报, 56(34): 2873—2880. DENG Tao, WANG Shi-qi, XIE Guang-pu, [4] 丁林, 许强, 张利云, 等. 2009. 青藏高原河流氧同位素区域变化特征与高度预测模型建立[J]. 第四纪研究, 29(1): 1—12. DING Lin, XU Qiang, ZHANG Li-yun, [5] 戈宏儒, 李代芸. 1999. 云南西部新生代含煤盆地及聚煤规律 [M]. 昆明: 云南科技出版社. GE Hong-ru, LI Dai-yun. 1999. Cenozoic Coal-bearing Basin and Coal-forming Regularity in West Yunnan [M]. Yunnan Science and Technology Press, Kunming(in Chinese). [6] 郭双兴. 2011. 云南临沧晚中新世邦卖组植物群[J]. 古生物学报, 50(3): 353—408. GUO Shuang-xing. 2011. The Late Miocene Bangmai flora from Lincang County of Yunnan, southwestern China[J]. Acta Palaeontologica Sinica, 50(3): 353—408(in Chinese). [7] 李吉均, 文世宣, 张青松, 等. 1979. 青藏高原隆起的时代、 幅度和形式的探讨[J]. 中国科学, 22(6): 608—616. LI Ji-jun, WEN Shi-xuan, ZHANG Qing-song, [8] 李勇, 侯中健, 司光影, 等. 2001. 青藏高原东南缘晚第三纪盐源构造逸出盆地的沉积特征与构造控制[J]. 矿物岩石, 21(3): 34—43. LI Yong, HOU Zhong-jian, SI Guang-ying, [9] 李忠雄, 陈智梁, 李修忠. 2004. 青藏高原东部贡觉盆地新生代火山岩的K-Ar稀释法年龄[J]. 地球科学(中国地质大学学报), 29(3): 278—282. LI Zhong-xiong, CHEN Zhi-liang, LI Xiu-zhong. 2004. K-Ar ages of Cenozoic volcanic rocks from Gongjue Basin in eastern Tibet[J]. Earth Science(Journal of China University of Geosciences), 29(3): 278—282(in Chinese). [10] 刘凤山, 吴中海, 张岳桥, 等. 2014. 青藏高原东缘新构造与活动构造研究新进展及展望[J]. 地质通报, 33(4): 403—418. LIU Feng-shan, WU Zhong-hai, ZHANG Yue-qiao, [11] 刘静, 曾令森, 丁林, 等. 2009. 青藏高原东南缘构造地貌、 活动构造和下地壳流动假说[J]. 地质科学, 44(4): 1227—1255. LIU-ZENG Jing, ZENG Ling-seng, DING Lin, [12] 覃琼, 徐亚东, 张克信, 等. 2018. 滇西剑川盆地剑川组火山事件的定年和古环境研究[J]. 地质学报, 92(10): 2096—2105. QIN Qiong, XU Ya-dong, ZHANG Ke-xin, [13] 沈青强, 曹凯, 王国灿, 等. 2017. 剑川-兰坪盆地古近纪沉积——构造变革及其区域构造意义[J]. 大地构造与成矿学, 41(1): 23—41. SHEN Qing-qiang, CAO Kai, WANG Guo-can, [14] 施雅风, 刘东生. 1964. 希夏邦马峰地区科学考察初步报告[J]. 科学通报, 9(10): 928—938. SHI Ya-feng, LIU Dong-sheng. 1964. Preliminary report on the scientific investigation of the Mount Shisha Pangma area[J]. Science Bulletin, 9(10): 928—938(in Chinese). [15] 陶君容, 杜乃秋. 1987. 芒康中新世植物及桦木科植物的分布历史[J]. 植物学报, 29(6): 649—655. TAO Jun-rong, DU Nai-qiu. 1987. The Miocene plants and betulaceae distribution history in Mangkang[J]. Acta Botanica Sinica, 29(6): 649—655(in Chinese). [16] 吴贵灵, 祝成宇, 王国灿, 等. 2019. 青藏高原东南缘地貌边界性质的界定及其对高原东南缘扩展模式的启示[J]. 地震地质, 41(2): 281—299. doi: 10.3969/j.issn.0253-4967.2019.02.003. WU Gui-ling, ZHU Cheng-yu, WANG Guo-can, [17] 徐仁, 陶君容, 孙湘君. 1973. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义[J]. 植物学报, 15(1): 103—114. XU Ren, TAO Jun-rong, SUN Xiang-jun. 1973. On the discovery of a Quercus semicarpifolia bed in Mount Shisha Pangma and its significance in botany and geology[J]. Acta Botanica Sinica, 15(1): 103—114(in Chinese). [18] 云南省地质矿产局第三地质大队. 1991. 1/20万芒康幅、 盐井幅区域地质调查报告 [R]. 大理: 云南省地质矿产局第三地质大队. The Third Geological Party of Yunnan Bureau of Geology and Mineral Resources. 1991. 1:200 000 regional geological survey report of Mangkang and Yanjing map sheet [R]. The Third Geological Party of Yunnan Bureau of Geology and Mineral Resources, Dali(in Chinese). [19] 云南省地质矿产局. 1990. 云南省区域地质志 [M]. 北京: 地质出版社. Bureau of Geology and Mineral Resources of Yunnan Province. 1990. Regional Geology of Yunnan Province [M]. Geological Publishing House, Beijing(in Chinese). [20] 张远志. 1996. 全国地层多重划分对比研究: 云南省岩石地层 [M]. 北京: 中国地质大学出版社: 193. ZHANG Yuan-zhi. 1996. Multiple Classification and Correlation of the Stratigraphy in China: Stratigraphy(Lithostratic)of Yunnan Province [M]. China Universityof Geosciences Press, Beijing: 193(in Chinese). [21] 周浙昆, 杨青松, 夏珂. 2007. 栎属高山栎组植物化石推测青藏高原的隆起[J]. 科学通报, 52(3): 249—257. ZHOU Zhe-kun, YANG Qing-song, XIA Ke. 2007. Constant on the Tibetan plateau uplift inferred from Quercus section Heterobalanus(Oerst.)Menitsky fossils[J]. Chinese Science Bulletin, 52(3): 249—257(in Chinese). [22] An Z S, Kutzbach J E, Prell W L. 2001. Phased Himalaya-Tibetan uplift since the Late Miocene and evolution of Asian monsoons[J]. Nature, 411(6833): 62—66(in Chinese). [23] Avouac J P, Tapponnier P. 1993. Kinematic model of active deformation in Central-Asia[J]. Geophysical Research Letters, 20(10): 895—898. [24] Bershaw J, Penny S M, Garzione C N. 2012. Stable isotopes of modern water across the Himalaya and eastern Tibetan plateau: Implications for estimates of paleoelevation and paleoclimate[J]. Journal of Geophysical Research: Atmospheres, 117(D2): 2110. [25] Clark M K, House M A, Royden L H, [26] Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703—706. [27] Clark M K, Royden L H, Whipple K X, [28] Currie B S, Rowley D B, Tabor N J. 2005. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen[J]. Geology, 33(3): 181—184. [29] Cyr A J, Currie B S, Rowley D B. 2005. Geochemical evaluation of Fenghuoshan group lacustrine carbonates, north-central Tibet: Implicationsfor the paleoaltimetry of the Eocene Tibetan plateau[J]. Journal of Geology, 113(5): 517—533. [30] Dansgaard W. 1964. Stable isotopes in precipitation[J]. Tellus, 16(4): 436—468. [31] DeCelles P G, Kapp P, Ding L, [32] Deng T, Ding L. 2015. Paleoaltimetry reconstructions of the Tibetan plateau: Progress and contradictions[J]. National Science Review, 2(4): 417—437. [33] Deng T, Li Q, Tseng Z J, [34] Deng T, Wang X, Wu F, [35] Dewey J F, Shackleton R M, Chang C F, [36] Ding L, Xu Q, Yue Y, [37] Eiler J M, Schauble E. 2004.18O13C16O in Earth's atmosphere[J]. Geochimica Et Cosmochimica Acta, 68(23): 4767—4777. [38] England P C, Houseman G A. 1986. Finite strain calculations of continental deformation. Ⅱ: Application to the India-Asia plate collision[J]. Journal of Geophysical Research, 91(B3): 3664—3676. [39] Fielding E, Isacks B, Barazangi M, [40] Forest C E, Wolfe J A, Molnar P, [41] Garzione C N, Dettman D L, Quade J, [42] Garzione C N, Quade J, DeCelles P G, [43] Ghosh P, Adkins J, Affek H, [44] Ghosh P, Eiler J, Campana E S, [45] Gourbet L, Leloup P H, Paquette J L, [46] Gourbet L, Yang R, Fellin M G, [47] Guo Z T, Ruddiman W F, Hao Q Z, [48] Hoke G D. 2018. Geochronology transforms our view of how Tibet's southeast margin evolved[J]. Geology, 46(1): 95—96. [49] Hoke G D, Liu-Zeng J, Hren M T, [50] Horton B K, Yin A, Spurlin M S, [51] Hren M T, Bookhagen B, Blisniuk P M, [52] Insel N, Poulsen C J, Sturm C, [53] Jacques F M B, Guo S X, Su T, [54] Jacques F M B, Su T, Spicer R A, [55] Kouwenberg L L R, Kurschner W M, McElwain J C. 2007. Stomatal frequency change over altitudinal gradients: Prospects for paleoaltimetry[J]. Reviews in Mineralogy and Geochemistry, 66(1): 215—241. [56] Leier A, Quade J, DeCelles P, [57] Li J J, Shi Y F, Li B Y. 1995. Uplift of the Qinghai-Xizang(Tibet)Plateau and Global Change [M]. Lanzhou University Press, Lanzhou. [58] Li L, Garzione C N, Pullen A, [59] Li S Y, Currie B S, Rowley D B, [60] Li S H, Deng C L, Dong W, [61] Li S H, Deng H, Yao S, [62] Li S H, Hinsbergen D J J, Najman Y, [63] Li S H, Su T, Spicer R A, [64] Licht A, van Cappelle M, Abels H A, [65] Linnemann U, Su T, Kunzmann L, [66] Liu J, Su T, Spicer R A. 2019. Biotic interchange through lowlands of Tibetan plateau suture zones during Paleogene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 524(15): 33—40. [67] Liu-Zeng J, Tapponnier P, Gaudemer Y, [68] Liu-Zeng J, Zhang J, McPhillips D, [69] McElwain J C. 2004. Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure[J]. Geology, 32(12): 1017—1020. [70] Miao Y F, Wu F L, Chang H, [71] Molnar P, England P. 1990. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?[J]. Nature, 346(6279): 29—34. [72] Molnar P, England P, Martinod J, [73] Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision[J]. Science, 189(4201): 419—426. [74] Mosbrugger V, Utescher T. 1997. The coexistence approach-A method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 134:61—86. [75] Mulch A. 2016. Stable isotope paleoaltimetry and the evolution of landscapes and life[J]. Earth and Planetary Science Letters, 433:180—191. [76] Mulch A, Chamberlain C P. 2007. Stable isotope paleoaltimetry in orogenic belts: The silicate record in surface and crustal geological archives[J]. Reviews in Mineralogy and Geochemistry, 66(1): 89—118. [77] Murphy M A, Saylor J E, Ding L. 2009. Late Miocene topographic inversion in southwest Tibet based on integrated paleoelevation reconstructions and structural history[J]. Earth and Planetary Science Letters, 282(1): 1—9. [78] Nelson K D, Yin A, Harrison T M, [79] Nie J S, Ruetenik G, Gallagher K, [80] Ouimet W, Whipple K, Royden L, [81] Poage M A, Chamberlain C P. 2001. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change[J]. Journal of South American Earth Sciences, 301(1): 1—15. [82] Polissar P J, Freeman K H, Rowley D B, [83] Quade J, Eiler J, Daëron M, [84] Quade J, Garzione C, Eiler J. 2007. Paleoelevation reconstruction using Pedogenic carbonates[J]. Reviews in Mineralogy and Geochemistry, 66(1): 53—87. [85] Raymo M E, Ruddiman W F. 1992. Tectonic forcing of late Cenozoic climate[J]. Nature, 359(6391): 117—122. [86] Rowley D B, Currie B S. 2006. Paleo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet[J]. Nature, 439(7077): 677—681. [87] Rowley D B, Garzione C N. 2007. Stable isotope-based paleoaltimetry[J]. Annual Review of Earth and Planetary Sciences, 35(1): 463—508. [88] Rowley D B, Pierrehumbert R T, Currie B S. 2001. A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene[J]. Earth and Planetary Science Letters, 188:253—268. [89] Royden L H, Burchfiel B C, Hilst V R D. 2008. The geological evolution of the Tibetan plateau[J]. Science, 321(5892): 1054—1058. [90] Royden L H, Burchfiel B C, King R W, [91] Sahagian D L, Maus J E. 1994. Basalt vesicularity as a measure of atmospheric pressure and paleoelevation[J]. Nature, 372(6505): 449—451. [92] Saylor J E, Quade J, Dettman D L, [93] Shen X, Tian Y, Li D, [94] Si G, Li Y, Hou Z. 2000. The Tertiary stratigraphic sequence of Yanyuan Basin in the southeast margin of the Qinghai-Tibet plateau[J]. Frontiers of Earth Science, 7(S1): 304—305. [95] Sorrel P, Eymard I, Leloup P H, [96] Spicer R A, Harris N B W, Widdowson M, [97] Spurlin M S, Yin A, Horton B K, [98] Studnicki-Gizbert C, Burchfiel B C, Li Z, [99] Su T, Farnsworth A, Spicer R A, [100] Su T, Spicer R A, Li S H, [101] Sun B, Wang Y F, Li C S, [102] Tang M Y, Liu-Zeng J, Hoke G D, [103] Tapponnier P, Xu Z, Roger F, [104] Tian Y, Kohn B P, Gleadow A J, [105] Tong Y, Yang Z, Mao C, [106] Wang C S, Dai J, Zhao X, [107] Wang C S, Zhao X X, Liu Z F, [108] Wang H, Tian Y T, Liang M J. 2017. Late Cenozoic exhumation history of the Luoji Shan in the southeastern Tibetan plateau: Insights from apatite fission-track thermochronology[J]. Journal of Geological Society, 174(5): 883—891. [109] Wang S, Jiang G, Xu T, [110] Wang Y, Deng T, Biasatti D. 2006. Ancient diets indicate significant uplift of southern Tibet after ca. 7Ma[J]. Geology, 34(4): 309—312. [111] Wolfe J A. 1995. Paleoclimatic estimates from Tertiary leaf assemblages[J]. Annual Review of Earth and Planetary Sciences, 23(1): 119—142. [112] Wu J, Zhang K, Xu Y, [113] Xiong Z, Ding L, Spicer R A, [114] Xu G, Kamp P J J. 2000. Tectonics and denudation adjacent to the Xianshuihe Fault, eastern Tibetan plateau: Constraints from fission track thermochronology[J]. Journal of Geophysical Research: Solid Earth, 105(B8): 19231—19251. [115] Xu Q, Ding L, Zhang L, [116] Xu Q, Ding L, Zhang L Y, [117] Xu Q, Hoke G D, Liu-Zeng J, [118] Yang R, Fellin M G, Herman F, [119] Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28(1): 211—280. [120] Zhang H P, Oskin M E, Liu-Zeng J, [121] Zhang Y, Huang W, Huang B, [122] Zhang Y Z, Replumaz A, Leloup P H, |
[1] | 何翔, 杜星星, 刘健, 李艺豪, 李群. 武威盆地第四纪沉积过程及其构造意义[J]. 地震地质, 2022, 44(1): 76-97. |
[2] | 方东, 胡敏章, 郝洪涛. 青藏高原东南缘重力场多尺度分析及其构造含义[J]. 地震地质, 2021, 43(5): 1208-1232. |
[3] | 宋向辉, 王帅军, 潘素珍, 宋佳佳. 2021年玛多MS7.4地震的深部构造背景[J]. 地震地质, 2021, 43(4): 757-770. |
[4] | 商咏梅, 杨彧, 杨晓松. 岩石圈主要各向异性矿物的CPO特征及其对岩石圈动力学研究的启示[J]. 地震地质, 2019, 41(3): 704-725. |
[5] | 陈兆辉, 孟小红, 张双喜, 刘金钊, 王同庆, 张品, 韦少港. 青藏高原东南缘多尺度重力场变化特征及孕震机理分析[J]. 地震地质, 2019, 41(3): 690-703. |
[6] | 王辉, 曹建玲, 徐化超. 中小地震震源机制解在青藏高原东南缘地区断层稳定性分析中的初步应用[J]. 地震地质, 2019, 41(3): 633-648. |
[7] | 吴贵灵, 祝成宇, 王国灿, 张攀. 青藏高原东南缘地貌边界性质的界定及其对高原东南缘扩展模式的启示[J]. 地震地质, 2019, 41(2): 281-299. |
[8] | 王虎, 冉勇康, 陈立春, 梁明剑, 高帅坡, 李彦宝, 徐良鑫. 安宁河断裂带南段滑动速率估计[J]. 地震地质, 2018, 40(5): 967-979. |
[9] | 李永华, 徐小明, 张恩会, 高家乙. 青藏高原东南缘地壳结构及云南鲁甸、景谷地震深部孕震环境[J]. 地震地质, 2014, 36(4): 1204-1216. |
[10] | 何为, 李大明, 郑德文, 万景林, 许英霞. 东天山地区风化矿物黄钾铁矾的K-Ar测年及其环境意义[J]. 地震地质, 2009, 31(3): 415-423. |
[11] | 邓万明. 青藏及邻区新生代火山活动及构造演化[J]. 地震地质, 2003, 25(s1): 51-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||