[1] 毕海芸, 郑文俊, 曾江源, 等. 2017. SfM摄影测量方法在活动构造定量研究中的应用[J]. 地震地质, 39(4): 656—674. doi: 10.3969/j.issn.0253-4967.2017.04.003. BI Hai-yun, ZHENG Wen-jun, ZENG Jiang-yuan, et al. 2017. Application of SfM photogrammetry method to the quantitative study of active tectonics[J]. Seismology and Geology, 39(4): 656—674(in Chinese). [2] 董秀军. 2015. 三维空间影像技术在地质工程中的综合应用研究 [D]. 成都: 成都理工大学. DONG Xiu-jun.2015. Research of comprehensive application of three-dimensional image technology in geologic engineering[D]. Chengdu University of Technology, Chengdu(in Chinese). [3] 高伟, 何宏林, 邹俊杰, 等. 2017. 三维图像建模在古地震探槽研究中的应用[J]. 地震地质, 39(1): 172—182. doi: 10.3969/j.issn.0253-4967.2017.01.013. GAO Wei, HE Hong-lin, ZOU Jun-jie, et al. 2017. The application of image-based modeling in paleoearthquake trench study[J]. Seismology and Geology, 39(1): 172—182(in Chinese). [4] 彭大雷, 许强, 董秀军, 等. 2017. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展, 32(3): 319—330. PENG Da-lei, XU Qiang, DONG Xiu-jun, et al. 2017. Application of unmanned aerial vehicles low-altitude photogrammetry in investigation and evaluation of loess landslide[J]. Advances in Earth Science, 32(3): 319—330(in Chinese). [5] 秦胜伍, 陈骏骏, 陈剑平, 等. 2016. 基于粗糙集理论的岩体结构面模糊C均值聚类分析[J]. 中南大学学报(自然科学版), 47(9): 3125—3130. QIN Sheng-wu, CHEN Jun-jun, CHEN Jian-ping, et al. 2016. Fuzzy C-means cluster analysis based on rough set for grouping of discontinuities[J]. Journal of Central South University(Science and Technology), 47(9): 3125—3130(in Chinese). [6] 许强, 魏勇, 彭大雷, 等. 2018. 泾阳南塬蒋刘4#滑坡特征及成因机制[J]. 水文地质工程地质, 45(1): 123—130, 143. XU Qiang, WEI Yong, PENG Da-lei, et al. 2018. Characteristics and failure mechanism of the Jiangliu 4# landslide in the southern tableland in Jingyang County[J]. Hydrogeology and Engineering Geology, 45(1): 123—130, 143(in Chinese). [7] 姚远, 陈建波, 李帅, 等. 2016. 新疆天山南部北轮台断裂古地震事件反演[J]. 工程地质学报, 24(6): 1278—1285. YAO Yuan, CHEN Jian-bo, LI Shuai, et al. 2016. Inversion the paleoearthquake event of Beiluntai Fault at south of Tianshan, in Xinjiang[J]. Journal of Engineering Geology, 24(6): 1278—1285(in Chinese). [8] 郑文俊, 雷启云, 杜鹏, 等. 2015. 激光雷达(LiDAR): 获取高精度古地震探槽信息的一种新技术[J]. 地震地质, 37(1): 232—241. doi: 10.3969/j.issn.0253-4967.2015.01.018. ZHENG Wen-jun, LEI Qi-yun, DU Peng, et al. 2015. 3-D laser scanner(LiDAR): A new technology for acquiring high precision palaeoearthquake trench information[J]. Seismology and Geology, 37(1): 232—241(in Chinese). [9] Bemis S P, Micklethwaite S, Turner D, et al. 2014. Ground-based and UAV-based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology[J]. Journal of Structural Geology, 69:163—178. [10] Colomina I, Molina P.2014. Unmanned aerial systems for photogrammetry and remote sensing: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 92:79—97. [11] Garstki K, Schulenburg M, Cook R A.2018. Practical application of digital photogrammetry for fieldwork in the American Midwest: An example from the Middle Ohio Valley[J]. Midcontinental Journal of Archaeology, 43(2): 133—150. [12] Gonçalves J A, Henriques R.2015. UAV photogrammetry for topographic monitoring of coastal areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 14:101—111. [13] Han J Y, Huang N J, Chuang J T Y.2017. Application of laser scanning for rapid geologic documentation of trench exposures[J]. Engineering Geology, 224:97—104. [14] Lin A M, Chen P, Satsukawa T, et al. 2017. Millennium recurrence interval of morphogenic earthquakes on the seismogenic fault zone that triggered the 2016 MW7.1 Kumamoto earthquake, Southwest Japan[J]. Bulletin of the Seismological Society of America, 107(6): 2687—2702. [15] Luhmann T, Robson S, Kyle S A, et al. 2006. Close Range Photogrammetry: Principles, Techniques and Applications [M]. Blackwell Publishing Ltd, Oxford, United Kingdom. [16] Shen H O, Zheng F L, Wen L L, et al. 2015. An experimental study of rill erosion and morphology[J]. Geomorphology, 231:193—201. [17] Peng J B, Ma P H, Wang Q Y, et al. 2018. Interaction between landsliding materials and the underlying erodible bed in a loess flowslide[J]. Engineering Geology, 234:38—49. [18] Peng J B, Wang G H, Wang Q Y, et al. 2017. Shear wave velocity imaging of landslide debris deposited on an erodible bed and possible movement mechanism for a loess landslide in Jingyang, Xi'an, China[J]. Landslides, 14(4): 1503—1512. [19] Peng J B, Xu J S, Ma R Y, et al. 2016. Characteristics and mechanism of the Longyao ground fissure on North China Plain, China[J]. Engineering Geology, 214:136—146. [20] Reitman N G, Bennett S E K, Gold R D, et al. 2015. High-resolution trench photomosaics from image-based modeling: Workflow and error analysis[J]. Bulletin of the Seismological Society of America, 105(5): 1—13. [21] Shevchenko A V, Dvigalo V N, Svirid I Y.2015. Airborne photogrammetry and geomorphological analysis of the 2001-2012 exogenous dome growth at Molodoy Shiveluch Volcano, Kamchatka[J]. Journal of Volcanology and Geothermal Research, 34:94—107. [22] Sieh K E.1978. Prehistoric large earthquakes produced by slip on the San Andreas Fault at Pallett Creek, California[J]. Journal of Geophysical Research: Solid Earth, 83(B8): 3907—3939. [23] Westoby M J, Brasington J, Glasser N F, et al. 2012. ‘Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications[J]. Geomorphology, 179:300—314. [24] Zhang B, Yuan D Y, He W G, et al. 2018. First discovery of north-south striking normal faults near the potential eastern end of Altyn Tagh Fault[J]. Journal of Earth Science, 29(1): 182—192. |