[1] 高原, 滕吉文. 2005. 中国大陆地壳与上地幔地震各向异性研究[J]. 地球物理学进展, 20(1): 181—185. GAO Yuan, TENG Ji-wen.2005. Studies on seismic anisotropy in the crust and mantle on Chinese mainland[J]. Progress in Geophysics, 20(1): 181—185(in Chinese). [2] 高原, 吴晶, 易桂喜. 2010. 从壳幔地震各向异性初探华北地区壳幔耦合关系[J]. 科学通报, 55(29): 2837—2843. GAO Yuan, WU Jing, YI Gui-xi.2010. Crust-mantle coupling in North China: Preliminary analysis from seismic anisotropy[J]. Chinese Science Bulletin, 55(29): 2837—2843(in Chinese). [3] 顾勤平, 丁志峰, 康清清, 等. 2016. 郯庐断裂带中南段及邻区Pn波速度结构与各向异性[J]. 地球物理学报, 59(2): 504—515. GU Qin-ping, DING Zhi-feng, KANG Qing-qing, et al. 2016. Pn wave velocity and anisotropy in the middle-southern segment of the Tan-Lu fault zone and adjacent region[J]. Chinese Journal of Geophysics, 59(2): 504—515(in Chinese). [4] 顾勤平, 丁志峰, 康清清, 等. 2020a. 郯庐断裂带中南段及邻区基于背景噪声的瑞利波群速度层析成像[J]. 地球物理学报, 63(4): 1505—1522. GU Qin-ping, DING Zhi-feng, KANG Qing-qing, et al. 2020a. Group velocity tomography of Rayleigh wave in the middle-southern segment of the Tan-Lu fault zone and adjacent regions using ambient seismic noise[J]. Chinese Journal of Geophysics, 63(4): 1505—1522(in Chinese). [5] 顾勤平, 康清清, 丁志峰, 等. 2020b. 郯庐断裂带鲁苏皖段及邻区上地幔顶部Pn波速度与各向异性[J]. 地球物理学报, 63(7): 2548—2565. GU Qin-ping, KANG Qing-qing, DING Zhi-feng, et al. 2020b. Uppermost mantle Pn-wave velocity and anisotropy structure beneath the Shandong-Jiangsu-Anhui segment of the Tan-Lu fault zone and its adjacent regions[J]. Chinese Journal of Geophysics, 63(7): 2548—2565(in Chinese). [6] 郭震, 唐有彩, 陈永顺, 等. 2012. 华北克拉通东部地壳和上地幔结构的接收函数研究[J]. 地球物理学报, 55(11): 3591—3600. GUO Zhen, TANG You-cai, CHEN Yong-shun, et al. 2012. A study on crustal and upper mantle structures in east part of North China Craton using receiver functions[J]. Chinese Journal of Geophysics, 55(11): 3591—3600(in Chinese). [7] 黄耘, 李清河, 张元生, 等. 2011. 郯庐断裂带鲁苏皖段及邻区地壳速度结构[J]. 地球物理学报, 54(10): 2549—2559. HUANG Yun, LI Qing-he, ZHANG Yuan-sheng, et al. 2011. Crustal velocity structure beneath the Shandong-Jiangsu-Anhui segment of the Tancheng-Lujiang Fault zone and adjacent areas[J]. Chinese Journal of Geophysics, 54(10): 2549—2559(in Chinese). [8] 黄忠贤. 2011. 华北地区地壳上地幔速度各向异性研究[J]地球物理学报, 54(3): 681—691. HUANG Zhong-xian.2011. Velocity anisotropy in the crust and mantle of North China[J]. Chinese Journal of Geophysics, 54(3): 681—691(in Chinese). [9] 李春峰, 陈冰, 周祖翼. 2009. 中国东部及邻近海域磁异常数据所揭示的深部构造[J]. 中国科学(D辑), 39(12): 1770—1779. LI Chun-feng, CHEN Bing, ZHOU Zu-yi.2009. Deep crustal structures of eastern China and adjacent seas revealed by magnetic data[J]. Science in China(Ser D), 39(12): 1770—1779(in Chinese). [10] 李家灵, 晁洪太, 崔昭文, 等. 1994. 郯庐活断层的分段及其大震危险性[J]. 地震地质, 16(2): 121—126. LI Jia-ling, CHAO Hong-tai, CUI Zhao-wen, et al. 1994. Segmentation of active fault along the Tancheng-Lujiang Fault zone and evaluation of strong earthquake risk[J]. Seismology and Geology, 16(2): 121—126(in Chinese). [11] 李志伟, 胥颐, 郝天珧, 等. 2006. 环渤海地区的地震层析成像与地壳上地幔结构[J]. 地球物理学报, 49(3): 797—804. LI Zhi-wei, XU Yi, HAO Tian-yao, et al. 2006. Seismic tomography and velocity structure in the crust and upper mantle around Bohai Sea area[J]. Chinese Journal of Geophysics, 49(3): 797—804(in Chinese). [12] 刘保金, 酆少英, 姬计法, 等. 2015. 郯庐断裂带中南段的岩石圈精细结构[J]. 地球物理学报, 58(5): 1610—1621. LIU Bao-jin, FENG Shao-ying, JI Ji-fa, et al. 2015. Fine lithosphere structure beneath the middle-southern segment of the Tan-Lu fault zone[J]. Chinese Journal of Geophysics, 58(5): 1610—1621(in Chinese). [13] 鲁来玉, 何正勤, 丁志峰, 等. 2014. 基于背景噪声研究云南地区面波速度非均匀性和方位各向异性[J]. 地球物理学报, 57(3): 822—836. LU Lai-yu, HE Zheng-qin, DING Zhi-feng, et al. 2014. Azimuthal anisotropy and velocity heterogeneity of Yunnan area based on seismic ambient noise[J]. Chinese Journal of Geophysics, 57(3): 822—836(in Chinese). [14] 吕坚, 谢祖军, 郑勇, 等. 2016. 华南地块及其邻区Rayleigh波相速度层析成像研究[J]. 中国科学(D辑), 59(11): 1—14. LÜ Jian, XIE Zu-jun, ZHENG Yong, et al. 2016. Rayleigh wave phase velocities of South China block and its adjacent areas[J]. Science in China(Ser D), 59(11): 1—14(in Chinese). [15] 孟亚锋, 姚华建, 王行舟, 等. 2019. 基于背景噪声成像方法研究郯庐断裂带中南段及邻区地壳速度结构与变形特征[J]. 地球物理学报, 62(7): 2490—2509. MENG Ya-feng, YAO Hua-jian, WANG Xing-zhou, et al. 2019. Crustal velocity structure and deformation features in the central-southern segment of Tanlu fault zone and its adjacent area from ambient noise tomography[J]. Chinese Journal of Geophysics, 62(7): 2490—2509(in Chinese). [16] 唐新功, 陈永顺, 唐哲. 2006. 应用布格重力异常研究郯庐断裂构造[J]. 地震学报, 28(6): 603—610. TANG Xin-gong, CHEN Yong-shun, TANG Zhe.2006. Bouguer gravity study of middle section of Tan-Lu Fault[J]. Acta Seismologica Sinica, 28(6): 603—610(in Chinese). [17] 唐有彩, 陈永顺, 杨英杰, 等. 2011. 华北克拉通中部地区背景噪声成像[J]. 地球物理学报, 54(8): 2011—2022. TANG You-cai, CHEN Yong-shun, YANG Ying-jie, et al. 2011. Ambient noise tomography in North China Craton[J]. Chinese Journal of Geophysics, 54(8): 2011—2022(in Chinese). [18] 万桂梅, 汤良杰, 金文正, 等. 2009. 郯庐断裂带研究进展及存在问题探讨[J]. 地质评论, 55(2): 251—259. WAN Gui-mei, TANG Liang-jie, JIN Wen-zheng, et al. 2009. Process and problems in the study of Tancheng-Lujiang Fault zone[J]. Geological Review, 55(2): 251—259(in Chinese). [19] 吴萍萍, 丁志峰, 马小军, 等. 2015. 基于背景噪声研究大别—苏鲁及邻区的瑞雷波群速度结构[J]. 地震学报, 37(2): 218—229. WU Ping-ping, DING Zhi-feng, MA Xiao-jun, et al. 2015. Rayleigh wave group velocity tomography beneath Dabie-Sulu and its adjacent areas from ambient seismic noise[J]. Acta Seismologica Sinica, 37(2): 218—229(in Chinese). [20] 熊振, 李清河, 张元生, 等. 2016. 郯庐断裂带鲁苏皖段地壳速度结构的分段特征及其地质意义[J]. 地球物理学报, 59(7): 2433—2443. XIONG Zhen, LI Qing-he, ZHANG Yuan-sheng, et al. 2016. Segmentation of crustal velocity structure beneath the Shandong-Jiangsu-Anhui segment of the Tanlu fault zone and adjacent areas and its geological implications[J]. Chinese Journal of Geophysics, 59(7): 2433—2443(in Chinese). [21] 许汉刚, 范小平, 冉勇康, 等. 2016. 郯庐断裂带宿迁段F5断裂浅层地震勘探新证据[J]. 地震地质, 38(1): 31—43. doi: 10.3969/j.issn.0253-4967.2016.01.003. XU Han-gang, FAN Xiao-ping, RAN Yong-kang, et al. 2016. New evidences of the Holocene fault in Suqian segment of the Tanlu fault zone discovered by shallow seismic exploration method[J]. Seismology and Geology, 38(1): 31—43(in Chinese). [22] 徐纪人, 杨文采, 赵志新, 等. 2003. 苏鲁大别造山带岩石圈三维P波速度结构特征[J]. 地质学报, 77(4): 577—582. XU Ji-ren, YANG Wen-cai, ZHAO Zhi-xin, et al. 2003. Three-dimensional velocity structures of the Sulu-Dabie orogen belt[J]. Acta Geologica Sinica, 77(4): 577—582(in Chinese). [23] 徐佩芬, 刘福田, 王清晨, 等. 2000. 大别—苏鲁碰撞造山带的地震层析成像研究: 岩石圈三维速度结构[J]. 地球物理学报, 43(3): 377—383. XU Pei-fen, LIU Fu-tian, WANG Qing-chen, et al. 2000. Seismic tomography beneath the Dabie-Sulu collision orogeny: 3D velocity structures of lithosphere[J]. Chinese Journal of Geophysics, 43(3): 377—383(in Chinese). [24] 杨志高, 陈运泰, 张雪梅, 等. 2019. 青藏高原东缘及东北缘S波速度结构和径向各向异性[J]. 地球物理学报, 62(12): 4554—4570. YANG Zhi-gao, CHEN Yun-tai, ZHANG Xue-mei, et al. 2019. S-wave velocity structure and radial anisotropy in eastern and north-eastern margins of Tibetan plateau[J]. Chinese Journal of Geophysics, 62(12): 4554—4570(in Chinese). [25] 姚华建, 徐果明, 肖翔, 等. 2004. 基于图像分析的双台面波相速度频散曲线快速提取方法[J]. 地震地磁观测与研究, 25(1): 1—8. YAO Hua-jian, XU Guo-ming, XIAO Xiang, et al. 2004. A quick tracing method based on image analysis technique for the determination of dual station phase velocities dispersion curve of surface wave[J]. Seismological and Geomagnetic Observation and Research, 25(1): 1—8(in Chinese). [26] 叶庆东, 丁志峰, 郑晨, 等. 2015. 大别—苏鲁及其邻近地区基于背景噪声的瑞利波和勒夫波相速度层析成像[J]. 地震学报, 37(1): 29—38. YE Qing-dong, DING Zhi-feng, ZHENG Chen, et al. 2015. Phase velocity tomography of Rayleigh and Love waves in Dabie-Sulu and its adjacent areas from ambient seismic noise[J]. Acta Seismologica Sinica, 37(1): 29—38(in Chinese). [27] 易桂喜, 姚华建, 朱介寿, 等. 2010. 用Rayleigh面波方位各向异性研究中国大陆岩石圈形变特征[J]. 地球物理学报, 53(2): 256—268. YI Gui-xi, YAO Hua-jian, ZHU Jie-shou, et al. 2010. Lithospheric deformation of continental China from Rayleigh wave azimuthal anisotropy[J]. Chinese Journal of Geophysics, 53(2): 256—268(in Chinese). [28] 张继红, 赵国泽, 肖骑彬, 等. 2010. 郯庐断裂带中段(沂沭断裂带)电性结构与孕震环境[J]. 地球物理学报, 53(3): 605—611. ZHANG Ji-hong, ZHAO Guo-ze, XIAO Qi-bin, et al. 2010. Analysis of electric structure of the central Tan-Lu fault zone(Yi-Shu fault zone, 36°N)and seismogenic condition[J]. Chinese Journal of Geophysics, 53(3): 605—611(in Chinese). [29] 张鹏, 王良书, 钟锴, 等. 2007. 郯庐断裂带的分段性研究[J]. 地质论评, 53(5): 586—591. ZHANG Peng, WANG Liang-shu, ZHONG Kai, et al. 2007. Research on the segmentation of Tancheng-Lujiang Fault zone[J]. Geological Review, 53(5): 586—591(in Chinese). [30] 赵志新, 徐纪人. 2009. 广角反射地震探测得到的中国东部地壳三维P波速度结构[J]. 科学通报, 54(7): 931—937. ZHAO Zhi-xin, XU Ji-ren.2009. Three-dimensional crustal velocity structure of P-wave in East China from wide-angle refraction survey[J]. Chinese Science Bulletin, 54(7): 931—937(in Chinese). [31] 郑秀芬, 欧阳飚, 张东宁, 等. 2009. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报, 52(5): 1412—1417. ZHENG Xiu-fen, OUYANG Biao, ZHANG Dong-ning, et al. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics, 52(5): 1412—1417(in Chinese). [32] 朱光, 王薇, 顾承串, 等. 2016. 郯庐断裂带晚中生代演化历史及其对华北克拉通破坏过程的指示[J]. 岩石学报, 32(4): 935—949. ZHU Guang, WANG Wei, GU Cheng-chuan, et al. 2016. Late Mesozoic evolution history of the Tan-Lu fault zone and its indication to destruction processes of the North China craton[J]. Acta Petrologica Sinica, 32(4): 935—949(in Chinese). [33] 朱介寿, 王绪本, 杨宜海, 等. 2017. 青藏高原东缘的地壳流及动力过程[J]. 地球物理学报, 60(6): 2038—2057. ZHU Jie-shou, WANG Xu-ben, YANG Yi-hai, et al. 2017. The crust flow beneath the eastern margin of the Tibetan plateau and its process of dynamics[J]. Chinese Journal of Geophysics, 60(6): 2038—2057(in Chinese). [34] Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 169(3): 1239—1260. [35] Chen L, Zheng T Y, Xu W W.2006. A thinned lithospheric image of the Tanlu fault zone, eastern China: Constructed from wave equation-based receiver function migration[J]. Journal of Geophysical Research: Solid Earth, 111(B9):B09312. [36] Debayle E, Kennett B, Priestley K.2005. Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia[J]. Nature, 433(7025): 509—512. [37] Heidbach O, Rajabi M, Cui X F, et al. 2018. The World Stress Map database release 2016: Crustal stress pattern across scales[J]. Tectonophysics, 744:484—498. [38] Luo Y H, Xu Y X, Yang Y J, et al. 2012. Crustal structure beneath the Dabie orogenic belt from ambient noise tomography[J]. Earth and Planetary Science Letters, 313-314:12—22. [39] Luo Y H, Xu Y X, Yang Y J, et al. 2013. Crustal radial anisotropy beneath the Dabie orogenic belt from ambient noise tomography[J]. Geophysical Journal International, 195(2): 1149—1164. [40] Montagner J P, Nataf H C.1986. A simple method for inverting the azimuthal anisotropy of surface waves[J]. Journal of Geophysical Research: Solid Earth, 91(B1): 511—520. [41] Ouyang L B, Li H Y, Lü Q T, et al. 2014. Crustal and uppermost mantle velocity structure and its relationship with the formation of ore districts in the Middle-Lower Yangtze River region[J]. Earth and Planetary Science Letters, 48:378—389. [42] Shen W S, Ritzwoller M H, Kang D, et al. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International, 206(2): 954—979. [43] Smith M L, Dahlen F A.1973. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium[J]. Journal of Geophysical Research, 78(17): 3321—3333. [44] Tanimoto T, Anderson D L.1985. Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100-250sec[J]. Journal of Geophysical Research: Solid Earth, 90(B2): 1842—1858. [45] Tarantola A, Valette B.1982. Generalized nonlinear inverse problems solved using the least squares criterion[J]. Reviews of Geophysics, 20(2): 219—232. [46] Wessel P, Smith H F W.1998. New, improved version of generic mapping tools released[J]. EOS Transactions of the American Geophysical Union, 79(47): 579. [47] Yang X Y, Li H Y, Li Y H, et al. 2019. Seismic anisotropy beneath eastern China from shear wave splitting[J]. Geophysical Journal International, 218:1642—1651. [48] Yao H J, Beghein C, Van der Hilst R D.2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-Ⅱ. Crustal and upper-mantle structure[J]. Geophysical Journal International, 173(1): 205—219. [49] Yao H J, Van der Hilst R D, De Hoop M V.2006. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps[J]. Geophysical Journal International, 166(2): 732—744. [50] Zhao L, Zheng T Y, Lü G, et al. 2008. Insight into craton evolution: Constraints from shear wave splitting in the North China Craton[J]. Physics of the Earth and Planetary Interiors, 168(3-4): 153—162. [51] Zhou L Q, Xie J Y, Shen W S, et al. 2012. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography[J]. Geophysical Journal International, 189(3): 1565—1583. |