[1] 杨会丽. 2012. 地震相关快速沉积物释光测年研究. [D]. 北京: 中国地震局地质研究所. YANG Hui-li.2012. Optical dating research of rapidly deposited sediments related to earthquakes [D]. Institute of Geology, China Earthquake Administration, Beijing(in Chinese). [2] Arnold L J, Roberts R G.2009. Stochastic modelling of multi-grain equivalent dose(De)distributions: Implications for OSL dating of sediment mixtures[J]. Quaternary Geochronology, 4(3): 204—230. [3] Buylaert J P, Murray A S, Thomsen K J, et al. 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar[J]. Radiation Measurements, 44(5-6): 560—565. [4] Buylaert J P, Thiel C, Murray A S, et al. 2011. IRSL and post-IR IRSL residual doses recorded in modern dust samples from the Chinese loess plateau[J]. Geochronometria, 38(4): 432—440. [5] Dietze M, Kreutzer S, Fuchs M C, et al. 2013. A practical guide to the R package Luminescence[J]. Ancient TL, 31(1): 11—18. [6] Duller G A T.2008. Single-grain optical dating of Quaternary sediments: Why aliquot size matters in luminescence dating[J]. Boreas, 37(4): 589—612. [7] Fu X.2014. The De(T, t)plot: A straightforward self-diagnose tool for post-IR IRSL dating procedures[J]. Geochronometria, 41(4): 315—326. [8] Fu X, Li B, Li S H.2012. Testing a multi-step post-IR IRSL dating method using polymineral fine grains from Chinese loess[J]. Quaternary Geochronology, 10:8—15. [9] Fu X, Li S H.2013. A modified multi-elevated-temperature post-IR IRSL protocol for dating Holocene sediments using K-feldspar[J]. Quaternary Geochronology, 17:44—54. [10] Galbraith R F, Roberts R G, Laslett G M, et al. 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models[J]. Archaeometry, 41(2): 339—364. [11] Huntley D J, Lamothe M.2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating[J]. Canadian Journal of Earth Sciences, 38(7): 1093—1106. [12] Huntley D J, Lian O B.2006. Some observations on tunnelling of trapped electrons in feldspars and their implications for optical dating[J]. Quaternary Science Reviews, 25(19-20): 2503—2512. [13] Jain M, Ankjaergaard C.2011. Towards a non-fading signal in feldspar: Insight into charge transport and tunnelling from time-resolved optically stimulated luminescence[J]. Radiation Measurements, 46(3): 292—309. [14] Kars R H, Reimann T, Ankjaergaard C, et al. 2014. Bleaching of the post-IR IRSL signal: New insights for feldspar luminescence dating[J]. Boreas, 43(4): 780—791. [15] Li B, Jacobs Z, Roberts R G, et al. 2014. Review and assessment of the potential of post-IR IRSL dating methods to circumvent the problem of anomalous fading in feldspar luminescence[J]. Geochronometria, 41(3): 178—201. [16] Li B, Li S H.2008. Investigations of the dose-dependent anomalous fading rate of feldspar from sediments[J]. Journal of Physics D: Applied Physics, 41(22): 225502. [17] Li B, Li S H.2011. Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correction[J]. Quaternary Geochronology, 6(5): 468—479. [18] Li B, Roberts R G, Jacobs Z.2013. On the dose dependency of the bleachable and non-bleachable components of IRSL from K-feldspar: Improved procedures for luminescence dating of Quaternary sediments[J]. Quaternary Geochronology, 17:1—13. [19] Madsen A T, Murray A S.2009. Optically stimulated luminescence dating of young sediments: A review[J]. Geomorphology, 109(1-2): 3—16. [20] Medialdea A, Thomsen K J, Murray A S, et al. 2014. Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments[J]. Quaternary Geochronology, 22:11—24. [21] Muretta M.2009. Holocene earthquake geology of the central Altyn Tagh Fault, Xinjiang, China: Implications for recurrence interval, strain release rate, and fault behavior [D]. Arizona State University, Tempe, Arizona State, USA. [22] Nian X M, Bailey R M, Zhou L P.2012. Investigations of the post-IR IRSL protocol applied to single K-feldspar grains from fluvial sediment samples[J]. Radiation Measurements, 47(9): 703—709. [23] Qin J T, Zhou L P.2012. Effects of thermally transferred signals in the post-IR IRSL SAR protocol[J]. Radiation Measurements, 47(9): 710—715. [24] Reimann T, Tsukamoto S.2012. Dating the recent past(<500 years)by post-IR IRSL feldspar: Examples from the North Sea and Baltic Sea coast[J]. Quaternary Geochronology, 10:180—187. [25] Reimann T, Tsukamoto S, Naumann M, et al. 2011. The potential of using K-rich feldspars for optical dating of young coastal sediments: A test case from Darss-Zingst peninsula(southern Baltic Sea coast)[J]. Quaternary Geochronology, 6(2): 207—222. [26] Thiel C, Buylaert J P, Murray A, et al. 2011. Luminescence dating of the Stratzing loess profile(Austria): Testing the potential of an elevated temperature post-IR IRSL protocol[J]. Quaternary International, 234(1-2): 23—31. [27] Thomsen K J, Murray A S, Jain M, et al. 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts[J]. Radiation Measurements, 43(9-10): 1474—1486. [28] Wallinga J, Murray A, Wintle A.2000. The single-aliquot regenerative-dose(SAR)protocol applied to coarse-grain feldspar[J]. Radiation Measurements, 32(5-6): 529—533. [29] Washburn Z, Arrowsmith J R, Forman S L, et al. 2001. Late Holocene earthquake history of the central Altyn Tagh Fault, China[J]. Geology, 29(11): 1051—1054. |