[1] 崔丽苹, 张会星. 2018. 弹性波方程正演混合吸收边界的改进[J]. 中国海洋大学学报(自然科学版), 48(12): 87-92. CUI Li-ping, ZHANG Hui-xing.2018. Forward modeling of elastic wave equation with the improved hybrid absorbing boundary condition[J]. Periodical of Ocean University of China, 48(12): 87-92(in Chinese). [2] 邓继新, 史謌, 刘瑞珣, 等. 2004. 泥岩、 页岩声速各向异性及其影响因素分析[J]. 地球物理学报, 47(5): 862-868. DENG Ji-xin, SHI Ge, LIU Rui-xun, et al.2004. Analysis of the velocity anisotropy and its affection factors in shale and mudstone[J]. Chinese Journal of Geophysics, 47(5): 862-868(in Chinese). [3] 董良国, 马在田, 曹景忠, 等. 2000a. 一阶弹性波方程交错网格高阶差分解法[J]. 地球物理学报, 43(3): 411-419. DONG Liang-guo, MA Zai-tian, CAO Jing-zhong, et al.2000a. A staggered-grid high-order difference method of one-order elastic wave equation[J]. Chinese Journal of Geophysics, 43(3): 411-419(in Chinese). [4] 董良国, 马在田, 曹景忠. 2000b. 一阶弹性波方程交错网格高阶差分解法稳定性研究[J]. 地球物理学报, 43(6): 856-864. DONG Liang-guo, MA Zai-tian, CAO Jing-zhong.2000b. A study on stability of the staggered-grid high-order difference method of first-order elastic wave equation[J]. Chinese Journal of Geophysics, 43(6): 856-864(inChinese). [5] 侯安宁, 何樵登. 1995. 各向异性介质中弹性波动高阶差分法及其稳定性的研究[J]. 地球物理学报, 38(2): 243-251. HOU An-ning, HE Qiao-deng.1995. Study of an elastic wave high-order difference method and its stability in anisotropic media[J]. Chinese Journal of Geophysics, 38(2): 243-251(in Chinese). [6] 金振民, Ji S, 金淑燕. 1994. 橄榄石晶格优选方位和上地幔地震波速各向异性[J]. 地球物理学报, 37(4): 469-477. JIN Zhen-min, Ji S, JIN Shu-yan.1994. Lattice preferred orientation of olivines and seismic anisotropy in the upper mantle[J]. Chinese Journal of Geophysics, 37(4): 469-477(in Chinese). [7] 李景叶, 陈小宏. 2006a. TI介质地震波场数值模拟边界条件处理[J]. 西安石油大学学报(自然科学版), 21(4): 20-23. LI Jing-ye, CHEN Xiao-hong.2006a. Treatment of the boundary conditions in the numerical simulation of the seismic wave field in transversely isotropic(TI)medium[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 21(4): 20-23(in Chinese). [8] 李景叶, 陈小宏. 2006b. 横向各向同性介质地震波场数值模拟研究[J]. 地球物理学进展, 21(3): 700-705. LI Jing-ye, CHEN Xiao-hong.2006b. Study on seismic wave field numerical simulation in transverse isotropic medium[J]. Progress in Geophysics, 21(3): 700-705(in Chinese). [9] 李磊, 郝重涛. 2011. 横向各向同性介质和斜方介质各向异性参数的约束条件[J]. 地球物理学报, 54(11): 2819-2830. LI Lei, HAO Chong-tao.2011. Constraints on anisotropic parameters in transversely isotropic media and the extensions to orthorhombic media[J]. Chinese Journal of Geophysics, 54(11): 2819-2830(in Chinese). [10] 马德堂, 朱光明. 2006. 关于横向各向同性介质中的Thomsen参数取值的讨论[J]. 石油地球物理勘探, 41(4): 431-438. MA De-tang, ZHU Guang-ming.2006. Discussion on taking values of Thomsen parameters in transverse isotropic media[J]. Oil Geophysical Prospecting, 41(4): 431-438(in Chinese). [11] 裴正林. 2004a. 三维各向异性介质中弹性波方程交错网格高阶有限差分法数值模拟[J]. 石油大学学报(自然科学版), 28(5): 23-29. PEI Zheng-lin.2004a. Three-dimensional numerical simulation of elastic wave propagation in 3-D anisotropic media with staggered-grid high-order difference method[J]. Journal of China University of Petroleum(Natural Science Edition), 28(5): 23-29(in Chinese). [12] 裴正林. 2004b. 任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟[J]. 石油地球物理勘探, 39(6): 629-634. PEI Zheng-lin.2004b. Staggered-grid high-order finite difference numerical simulation of elastic wave equation with arbitrary undulations on the surface[J]. Oil Geophysical Prospecting, 39(6): 629-634. [13] 单启铜, 乐友喜. 2007. PML边界条件下二维黏弹性介质波场模拟[J]. 石油物探, 46(2): 126-130. SHAN Qi-tong, YUE You-xi.2007. Wavefield simulation of 2-D viscoelastic medium in perfectly matched layer boundary[J]. Geophysical Prospecting for Petroleum, 46(2): 126-130(in Chinese). [14] 孙林洁, 印兴耀. 2011. 基于PML边界条件的高倍可变网格有限差分数值模拟方法[J]. 地球物理学报, 54(6): 1614-1623. SUN Lin-jie, YIN Xing-yao.2011. A finite-difference scheme based on PML boundary condition with high power grid step variation[J]. Chinese Journal of Geophysics, 54(6): 1614-1623(in Chinese). [15] 王维红, 柯璇, 裴江云. 2013. 完全匹配层吸收边界条件应用研究[J]. 地球物理学进展, 28(5): 2508-2514. WANG Wei-hong, KE Xuan, PEI Jiang-yun.2013. Application investigation of perfectly matched layer absorbing boundary condition[J]. Progress in Geophysics, 28(5): 2508-2514(in Chinese). [16] 徐文才, 杨国权, 李振春, 等. 2016. 横向各向同性介质拟声波一阶速度-应力方程[J]. 石油地球物理勘探, 51(1): 87-96. XU Wen-cai, YANG Guo-quan, LI Zhen-chun, et al.2016. First order velocity-stress equation in TI media[J]. Oil Geophysical Prospecting, 51(1): 87-96(in Chinese). [17] 张衡, 刘洪, 李博, 等. 2017. TTI介质声波方程分裂式PML吸收边界条件研究[J]. 石油物探, 56(3): 349-361. ZHANG Heng, LIU Hong, LI Bo, et al.2017. The research on split PML absorbing boundary conditions of acoustic equation for TTI media[J]. Geophysical prospecting for Petroleum, 56(3): 349-361(in Chinese). [18] 赵海波, 王秀明, 王东, 等. 2007. 完全匹配层吸收边界在孔隙介质弹性波模拟中的应用[J]. 地球物理学报, 50(2): 581-591. ZHAO Hai-bo, WANG Xiu-ming, WANG Dong, et al.2007. Applications of the boundary absorption using a perfectly matched layer for elastic wave simulation in poroelastic media[J]. Chinese Journal of Geophysics, 50(2): 581-591(in Chinese). [19] 朱守彪, 袁杰, 缪淼. 2017. 青海玉树地震(MS=7.1)产生超剪切破裂过程的动力学机制研究[J]. 地球物理学报, 60(10): 3832-3843. ZHU Shou-biao, YUAN Jie, MIAO Miao.2017. Dynamic mechanisms for supershear rupture processes of the Yushu earthquake(MS=7.1)[J]. Chinese Journal of Geophysics, 60(10): 3832-3843(in Chinese). [20] 朱守彪, 袁杰. 2018. 2008年汶川大地震中北川地区极重震害的物理机制研究[J]. 地球物理学报, 61(5): 1863-1873. ZHU Shou-biao, YUAN Jie.2018. Physical mechanism for extremely serious seismic damage in the Beichuan area caused by the great 2008 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 61(5): 1863-1873(in Chinese). [21] Alkhalifah T.2000. An acoustic wave equation for anisotropic media[J]. Geophysics, 65(4): 1239-1250. [22] Berenger J P.1994. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of computational physics, 114(2): 185-200. [23] Cerjan C, Kosloff D, Kosloff R, et al.1985. A nonreflecting boundary condition for discrete acoustic and elastic wave equations[J]. Geophysics, 50(4): 705-708. [24] Clayton R W, Engquist B.1977. Absorbing boundary conditions for acoustic and elastic wave equations[J]. Bulletin of the Seismological Society of America, 67(6): 1529-1540. [25] Collino F, Tsogka C.2001. Application of the perfectly matched absorbing layer model to the linear electrodynamic problem in anisotropic heterogeneous media[J]. Geophysics, 66(1): 294-307. [26] Hastings F D, Schneider J B, Broschat S L.1996. Application of the perfectly matched layer(PML)absorbing boundary condition to elastic wave propagation[J]. The Journal of the Acoustical Society of America, 100(5): 3061-3069. [27] Hestholm S.2009. Acoustic VTI modeling using high-order finite differences[J]. Geophysics, 74(5): 67-73. [28] Kim K Y, Wrolstad K H, Aminzadeh F.1993. Effects of transverse isotropy on P-wave AVO for gas sands[J]. Geophysics, 58(6): 883-888. [29] Komatitsch D, Tromp J.2003. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation[J]. Geophysical Journal International, 154(1): 146-153. [30] Levander A R.1988. Fourth-order finite-difference P-SV seismograms[J]. Geophysics, 53(11): 1425-1436. [31] Ricker N.1944. Wavelet functions and their polynomials[J]. Geophysics, 9(3): 314-323. [32] Saenger E H, Gold N, Shapiro S A.2000. Modeling the propagation of elastic waves using a modified finite-difference grid[J]. Wave Motion, 31(1): 77-92. [33] Thomsen I.1986. Weak elastic anisotropy[J]. Geophysics, 51(10): 1954-1966. [34] Turkel E, Yefet A.1998. Absorbing PML boundary layers for wave-like equation[J]. Applied Numerical Mathematics, 27(4): 533-557. [35] Virieux J.1986. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method[J]. Geophysics, 51(4): 889-901. |