地震地质 ›› 2020, Vol. 42 ›› Issue (1): 147-162.DOI: 10.3969/j.issn.0253-4967.2020.01.010
高见1)(), 杨宜海2,)*(), 黄世源1), 杨聪3), 张元生4), 柳存喜5), 李少睿2), 花茜2)
收稿日期:
2019-06-03
出版日期:
2020-02-20
发布日期:
2020-06-17
通讯作者:
杨宜海
作者简介:
〔作者简介〕 高见, 男, 1988年生, 2013年于中国地震局兰州地震研究所获固体地球物理学专业硕士学位, 工程师, 主要从事地震活动性和地壳介质研究, 电话: 023-67086623, E-mail: dzggjj@163.com。
基金资助:
GAO Jian1)(), YANG Yi-hai2)(), HUANG Shi-yuan1), YANG Cong3), ZHANG Yuan-sheng4), LIU Cun-xi5), LI Shao-rui2), HUA Qian2)
Received:
2019-06-03
Online:
2020-02-20
Published:
2020-06-17
摘要:
文中搜集了重庆地震台网14个宽频带地震台站记录的远震波形资料, 利用接收函数Pms到时的方位变化首次获取了重庆地区的地壳各向异性结果, 同时采用接收函数H-Kappa方法获得了研究区的地壳厚度及泊松比。 结果显示: 重庆地区的地壳厚40~50km, 在大巴山推覆构造带附近存在明显的梯度变化; 地壳泊松比平均为0.23~0.31, 在重庆中部泊松比值达到最大。 重庆地区的地壳快慢波时间延迟为0.08~0.48s, 平均为0.22s; 绝大部分地区地壳的快波方向与断裂走向比较一致。 结合GPS观测、 构造应力场和XKS分裂测量等研究资料, 分析认为: 川东褶皱带和川黔断褶带的地壳和岩石圈上地幔为解耦变形, 其南、 北段具有不同的变形特征; 盆山边界可能存在复杂的深部构造变形, 影响了局部地区平均方位各向异性的快波方向, 不同走向的断裂活动还弱化了部分区域的平均各向异性强度; 大巴山推覆构造带南部的地壳变形可能主要受到断裂带构造的影响。
中图分类号:
高见, 杨宜海, 黄世源, 杨聪, 张元生, 柳存喜, 李少睿, 花茜. 重庆地区地壳各向异性及其构造启示[J]. 地震地质, 2020, 42(1): 147-162.
GAO Jian, YANG Yi-hai, HUANG Shi-yuan, YANG Cong, ZHANG Yuan-sheng, LIU Cun-xi, LI Shao-rui, HUA Qian. CRUSTAL ANISOTROPY AND ITS TECTONIC IMPLICATIONS IN THE CHONGQING REGION[J]. SEISMOLOGY AND GEOLOGY, 2020, 42(1): 147-162.
图 1 重庆地区的构造背景及台站分布红色三角形表示重庆地震台网的宽频带固定台站; 黑色震源球为4级及以上历史地震的震源机制①(重庆市地震局,2018,重庆市2019年度地震趋势研究报告。)F1华蓥山断裂带; F2长寿-遵义断裂; F3七曜山-金佛山断裂; F4方斗山断裂; F5彭水断裂; F6城口断裂
Fig. 1 Tectonic setting and location of seismic stations in the Chongqing region.
图 3 CHS台的接收函数H-Kappa搜索结果蓝、 绿、 红色表示Pms波及其多次转换波PpPs和PpSs+PsPs 的叠加振幅; 2条白线相交的位置为振幅最大值
Fig. 3 H-Kappa analysis result of receiver functions at station CHS.
图 4 以10°的反方位角间隔进行叠加后CHS台提取的接收函数波形(a)及各向异性校正后的Pms波形(b)
Fig. 4 Receiver functions recorded at station CHS by binned in 10° azimuthal caps(a)and Pms phases after the crustal anisotropy correction(b).
图5 网格搜索各向异性校正前后接收函数Pms叠加能量的比值分布图(CHS台)
Fig. 5 Ratio diagram of stacked Pms energy before and after the anisotropy correction from the grid search(station CHS).
地壳厚度/km | VP/km·s-1 | VS/km·s-1 | 快波方向/(°) | 各向异性/km·s-1 |
---|---|---|---|---|
50 | 5.95 | 3.5 | 30 | 0.2 |
表1 合成接收函数采用的单层水平地壳模型
Table1 Single layered horizontal crust model used for the synthetic receiver function data
地壳厚度/km | VP/km·s-1 | VS/km·s-1 | 快波方向/(°) | 各向异性/km·s-1 |
---|---|---|---|---|
50 | 5.95 | 3.5 | 30 | 0.2 |
序号 | 台站名 | 地壳厚度/km | 地壳平均VP/VS | 地壳泊松比 | 快波方向/(°) | 时间延迟/s |
---|---|---|---|---|---|---|
1 | CHK | 50.0±2.3 | 1.749±0.081 | 0.257±0.012 | 130 | 0.08 |
2 | CHS | 41.2±1.6 | 1.829±0.072 | 0.287±0.011 | 26 | 0.33 |
3 | CQT | 41.9±1.5 | 1.721±0.060 | 0.245±0.009 | 69 | 0.18 |
4 | FUL | 42.9±2.1 | 1.791±0.088 | 0.274±0.013 | ||
5 | HCB | 48.4±1.8 | 1.800±0.068 | 0.277±0.010 | ||
6 | QIJ | 41.8±2.4 | 1.860±0.106 | 0.297±0.017 | 39 | 0.48 |
7 | ROC | 39.9±1.3 | 1.731±0.057 | 0.250±0.008 | 60 | 0.25 |
8 | SHZ | 40.8±1.5 | 1.920±0.070 | 0.314±0.011 | ||
9 | WAS | 44.0±2.2 | 1.680±0.084 | 0.226±0.011 | 85 | 0.08 |
10 | WAZ | 45.4±1.8 | 1.812±0.070 | 0.281±0.011 | 106 | 0.34 |
11 | WUL | 43.6±1.9 | 1.689±0.072 | 0.230±0.010 | 180 | 0.13 |
12 | WUX | 50.0±1.9 | 1.738±0.065 | 0.253±0.009 | ||
13 | XIS | 41.6±1.8 | 1.702±0.074 | 0.236±0.010 | ||
14 | YUB | 40.7±1.7 | 1.771±0.073 | 0.266±0.011 | 174 | 0.10 |
表2 本文获取的各台下方的地壳厚度、 平均VP/VS、 快波方向及时间延迟
Table2 Crustal thickness, average VP/VS ratio, fast wave polarization direction and delay time beneath each station determined by this study
序号 | 台站名 | 地壳厚度/km | 地壳平均VP/VS | 地壳泊松比 | 快波方向/(°) | 时间延迟/s |
---|---|---|---|---|---|---|
1 | CHK | 50.0±2.3 | 1.749±0.081 | 0.257±0.012 | 130 | 0.08 |
2 | CHS | 41.2±1.6 | 1.829±0.072 | 0.287±0.011 | 26 | 0.33 |
3 | CQT | 41.9±1.5 | 1.721±0.060 | 0.245±0.009 | 69 | 0.18 |
4 | FUL | 42.9±2.1 | 1.791±0.088 | 0.274±0.013 | ||
5 | HCB | 48.4±1.8 | 1.800±0.068 | 0.277±0.010 | ||
6 | QIJ | 41.8±2.4 | 1.860±0.106 | 0.297±0.017 | 39 | 0.48 |
7 | ROC | 39.9±1.3 | 1.731±0.057 | 0.250±0.008 | 60 | 0.25 |
8 | SHZ | 40.8±1.5 | 1.920±0.070 | 0.314±0.011 | ||
9 | WAS | 44.0±2.2 | 1.680±0.084 | 0.226±0.011 | 85 | 0.08 |
10 | WAZ | 45.4±1.8 | 1.812±0.070 | 0.281±0.011 | 106 | 0.34 |
11 | WUL | 43.6±1.9 | 1.689±0.072 | 0.230±0.010 | 180 | 0.13 |
12 | WUX | 50.0±1.9 | 1.738±0.065 | 0.253±0.009 | ||
13 | XIS | 41.6±1.8 | 1.702±0.074 | 0.236±0.010 | ||
14 | YUB | 40.7±1.7 | 1.771±0.073 | 0.266±0.011 | 174 | 0.10 |
图 8 本文获取的地壳各向异性与GPS观测(依据国际地球参考框架, ITRF 2008)、 主压应力轴①(重庆地震局,2018,重庆市2019年度地震趋势研究报告。)和XKS分裂测量获取的各向异性结果②(https://splitting.gm.univ-montp.fr/。)的对比DNB 大巴山推覆构造带; ESFB 川东褶皱带; SGFFB 川黔断褶带
Fig. 8 Comparison of crustal anisotropy determined in this study with GPS observation(ITRF 2008, International Terrestrial Reference Frame), P-axis and seismic anisotropy derived from XKS splitting measurements.
[1] | 常利军, 丁志峰, 王椿镛. 2015. 2013年芦山MS7.0地震震源区横波分裂的变化特征[J]. 中国科学(D辑), 45(2): 161—168. |
CHANG Li-jun, DING Zhi-feng, WANG Chun-yong.2015. Variations of shear wave splitting in the 2013 Lushan MS7.0 earthquake region[J]. Science in China(Ser D), 45(2): 161—168(in Chinese). | |
[2] | 陈涛, 张锐, 黄世源. 2018. 三峡重庆地区形变场及构造应力场研究[J]. 大地测量与地球动力学, 38(2): 129—132. |
CHEN Tao, ZHANG Rui, HUANG Shi-yuan.2018. Study on deformation field and tectonic stress field in Chongqing area of the Three Gorges[J]. Journal of Geodesy and Geodynamics, 38(2): 129—132(in Chinese). | |
[3] | 丁仁杰, 李克昌. 2004. 重庆地震研究 [M]. 北京: 地震出版社. |
DING Ren-jie, LI Ke-chang.2004. Research of Earthquakes in Chongqing [M]. Seismological Press, Beijing(in Chinese). | |
[4] | 董云鹏, 查显峰, 付明庆, 等. 2008. 秦岭南缘大巴山褶皱-冲断推覆构造的特征[J]. 地质通报, 27(9): 1493—1508. |
DONG Yun-peng, ZHA Xian-feng, FU Ming-qing, et al.2008. Characteristics of the Dabashan fold-thrust nappe structure at the southern margin of the Qinling, China[J]. Geological Bulletin of China, 27(9): 1493—1508(in Chinese). | |
[5] | 高原, 石玉涛, 陈安国. 2018. 青藏高原东缘地震各向异性、 应力及汶川地震影响[J]. 科学通报, 63(19): 1934—1948. |
GAO Yuan, SHI Yu-tao, CHEN An-guo.2018. Crustal seismic anisotropy and compressive stress in the eastern margin of the Tibetan plateau and the influence of the MS8.0 Wenchuan earthquake[J]. Chinese Science Bulletin, 63(19): 1934—1948(in Chinese). | |
[6] | 高原, 石玉涛, 梁维, 等. 2008. 剪切波分裂系统分析方法SAM(2007): 软件系统[J]. 中国地震, 24(4): 345—353. |
GAO Yuan, SHI Yu-tao, LIANG Wei, et al.2008. Systematic analysis method of shear-wave splitting SAM(2007): Software system[J]. Earthquake Research in China, 24(4): 345—353(in Chinese). | |
[7] | 韩明, 李建有, 徐晓雅, 等. 2017. 按方位叠加接收函数分析青藏高原东南缘的地壳各向异性[J]. 地球物理学报, 60(12): 4537—4556. |
HAN Ming, LI Jian-you, XU Xiao-ya, et al.2017. Analysis for crustal anisotropy beneath the southeastern margin of Tibet by stacking azimuthal receiver functions[J]. Chinese Journal of Geophysics, 60(12): 4537—4556(in Chinese). | |
[8] | 胡建平, 赵军龙, 汪文秉, 等. 2005. 三峡重庆库区深部地球物理特征与断裂构造[J]. 地球科学与环境学报, 27(3): 49—54. |
HU Jian-ping, ZHAO Jun-long, WANG Wen-bing, et al.2005. Relation of deep geophysics fields and rupture construct in Yangtse Gorges Chongqing Reservoir area[J]. Journal of Earth Sciences and Environment, 27(3): 49—54(in Chinese). | |
[9] | 李峰, 张效亮, 刘华国. 2013. 重庆市主要构造地震危险性评价[J]. 地震地质, 35(3): 518—531. doi: 10.3969/j.issn.0253-4967.2013.03.006. |
LI Feng, ZHANG Xiao-liang, LIU Hua-guo.2013. Seismic hazard analysis of the main faults in Chongqing urban area[J]. Seismology and Geology, 35(3): 518—531(in Chinese). | |
[10] | 李王鹏, 刘少峰, 钱涛. 2015. 城口-房县断裂带的构造变形分析[J]. 大地构造与成矿学, 39(5): 755—768. |
LI Wang-peng, LIU Shao-feng, QIAN Tao.2015. Analysis of structural deformation of the Chengkou-Fangxian fault zone[J]. Geotectonica et Metallogenia, 39(5): 755—768(in Chinese). | |
[11] | 祁玉萍, 龙锋, 肖本夫, 等. 2018a. 2017年九寨沟7.0 级地震序列震源机制解和构造应力场特征[J]. 地球学报, 39(5): 622—634. |
QI Yu-ping, LONG Feng, XIAO Ben-fu, et al.2018a. Focal mechanism solutions and tectonic stress field characteristics of the 2017 MS7.0 Jiuzhaigou earthquake sequence[J]. Acta Geoscientica Sinica, 39(5): 622—634(in Chinese). | |
[12] | 祁玉萍, 张致伟, 龙锋, 等. 2018b. 大凉山次级块体及邻区震源机制解与区域应力场特征分析[J]. 地震地质, 40(2): 377—395. doi: 10.3969/j.issn.0253-4967.2018.02.007. |
QI Yu-ping, ZHANG Zhi-wei, LONG Feng, et al.2018b. Earthquake focal mechanisms in the Daliangshan sub-block and adjacent areas and characteristics of the regional stress field[J]. Seismology and Geology, 40(2): 377—395(in Chinese). | |
[13] | 石玉涛, 高原, 张永久, 等. 2013. 松潘-甘孜地块东部、 川滇地块北部与四川盆地西部的地壳剪切波分裂[J]. 地球物理学报, 56(2): 481—494. |
SHI Yu-tao, GAO Yuan, ZHANG Yong-jiu, et al.2013. Shear-wave splitting in the crust in eastern Songpan-Garzê block, Sichuan-Yunnan block and western Sichuan Basin[J]. Chinese Journal of Geophysics, 56(2): 481—494(in Chinese). | |
[14] | 王小龙, 倪四道, 刘渊源, 等. 2010. 利用远震接收函数分析三峡库区重庆段地壳厚度变化[J]. 地震地质, 32(4): 543—551. doi: 10.3969/j.issn.0253-4967.2010.04.002. |
WANG Xiao-long, NI Si-dao, LIU Yuan-yuan, et al.2010. Study of crustal thickness variation in Chongqing section of Three Gorges reservoir area from teleseismic receiver function method[J]. Seismology and Geology, 32(4): 543—551(in Chinese). | |
[15] | 吴晶, 太龄雪, 高原, 等. 2009. 辽宁岫岩MS5.9地震前应力积累的讨论[J]. 地震, 29(3): 37—44. |
WU Jing, TAI Ling-xue, GAO Yuan, et al.2009. Discussions on stress accumulation before the 1999 Xiuyan MS5.9 earthquake in Liaoning, China[J]. Earthquake, 29(3): 37—44(in Chinese). | |
[16] | 杨妍, 姚华建, 张萍, 等. 2018. 用接收函数方法研究华北克拉通中部造山带及其邻域地壳方位各向异性[J]. 中国科学(D辑), 48(7): 912—923. |
YANG Yan, YAO Hua-jian, ZHANG Ping, et al.2018. Crustal azimuthal anisotropy in the trans-North China orogen and adjacent regions from receiver functions[J]. Science in China(Ser D), 48(7): 912—923(in Chinese). | |
[17] | 杨宜海, 梁春涛, 苏金蓉. 2015. 用接收函数建立区域模型的震源机制反演及其在芦山地震序列研究中的应用[J]. 地球物理学报, 58(10): 3583—3600. |
YANG Yi-hai, LIANG Chun-tao, SU Jin-rong.2015. Focal mechanism inversion based on regional model inverted from receiver function and its application to the Lushan earthquake sequence[J]. Chinese Journal of Geophysics, 58(10): 3583—3600(in Chinese). | |
[18] | 易桂喜, 姚华建, 朱介寿, 等. 2010. 用Rayleigh面波方位各向异性研究中国大陆岩石圈形变特征[J]. 地球物理学报, 53(2): 256—268. |
YI Gui-xi, YAO Hua-jian, ZHU Jie-shou, et al.2010. Lithospheric deformation of continental China from Rayleigh wave azimuthal anisotropy[J]. Chinese Journal of Geophysics, 53(2): 256—268(in Chinese). | |
[19] | 张致伟, 周龙泉, 龙锋, 等. 2015. 汶川8.0和芦山7.0级地震序列应力场时空特征[J]. 地震地质, 37(3): 804—817. doi: 10.3969/j.issn.0253-4967.2015.03.011. |
ZHANG Zhi-wei, ZHOU Long-quan, LONG Feng, et al.2015. Spatial and temporal characteristic of stress field for Wenchuan MS8.0 and Lushan MS7.0 earthquake sequence[J]. Seismology and Geology, 37(3): 804—817(in Chinese). | |
[20] | Alford R M.1986. Shear data in the presence of azimuthal anisotropy[C]∥Annual International Meeting of the Society of Exploration Geophysicists, Expanded Abstracts, 56:476—479. |
[21] | Boness N L, Zoback M D.2004. Stress-induced seismic velocity anisotropy and physical properties in the SAFOD Pilot Hole in Parkfield, CA[J]. Geophysical Research Letters, 31(15): L15S17. |
[22] | Boness N L, Zoback M D.2006. Mapping stress and structurally controlled crustal shear velocity anisotropy in California[J]. Geology, 34(10): 825—828. |
[23] | Chang L J, Ding Z F, Wang C Y, et al.2017. Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan plateau using GPS and shear-wave splitting data[J]. Tectonophysics, 699:93—101. |
[24] | Chen Y, Niu F.2013a. Ray-parameter based stacking and enhanced pre-conditioning for stable inversion of receiver function data[J]. Geophysical Journal International, 194(3): 1682—1700. |
[25] | Chen Y, Zhang Z J, Sun C Q, et al.2013b. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions[J]. Gondwana Research, 24(3-4): 946—957. |
[26] | Crampin S.1991. Wave propagation through fluid-filled inclusions of various shapes: Interpretation of extensive-dilatancy anisotropy[J]. Geophysical Journal International, 104(3): 611—623. |
[27] | Gao Y, Wu J, Cai J A, et al.2009. Shear-wave splitting in the southeast of Cathaysia block, South China[J]. Journal of Seismology, 13(2): 267—275. |
[28] | Gao Y, Wu J, Fukao Y, et al.2011. Shear-wave splitting in the crust in North China: Stress, faults and tectonic implications[J]. Geophysical Journal International, 187(2): 642—654. |
[29] | Herrmann R B.2013. Computer programs in seismology: An evolving tool for instruction and research[J]. Seismological Research Letters, 84(6): 1081—1088. |
[30] | Hess R A, Macdowall R J.2003. Scattering of interplanetary radio waves at kilometric wavelengths[J]. Journal of Geophysical Research: Space Physics, 108(A8): 1313. |
[31] | Huang Z, Wang L, Xu M, et al.2015. Teleseismic shear-wave splitting in SE Tibet: Insight into complex crust and upper-mantle deformation[J]. Earth and Planetary Science Letters, 432:354—362. |
[32] | Kong F S, Wu J, Liu K H, et al.2016. Crustal anisotropy and ductile flow beneath the eastern Tibetan plateau and adjacent areas[J]. Earth and Planetary Science Letters, 442:72—79. |
[33] | Li H Y, Song X D, Lu Q T, et al.2018. Seismic imaging of lithosphere structure and upper mantle deformation beneath east-central China and their tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 123(4): 2856—2870. |
[34] | Liang C T, Song X D, Huang J L.2004. Tomographic inversion of Pn travel times in China[J]. Journal of Geophysical Research, 109(B11): B11304. |
[35] | Liu H, Niu F.2012. Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data[J]. Geophysical Journal International, 188(1): 144—164. |
[36] | Mcnamara D E, Owens T J.1993. Azimuthal shear wave velocity anisotropy in the Basin and Range Province using Moho Ps converted phases[J]. Journal of Geophysical Research: Solid Earth, 98(B7): 12003—12017. |
[37] | Mcnamara D E, Walter W R, Owens T J, et al.1997. Upper mantle velocity structure beneath the Tibetan plateau from Pn travel time tomography[J]. Journal of Geophysical Research: Solid Earth, 102(B1): 493—505. |
[38] | Montagner J P, Nataf H C.1986. A simple method for inverting the azimuthal anisotropy of surface waves[J]. Journal of Geophysical Research: Solid Earth, 91(B1): 511—520. |
[39] | Mueller M C.1991. Prediction of lateral variability in fracture intensity using multicomponent shear-wave seismic as a precursor to horizontal drilling[J]. Geophysical Journal International, 107(3): 409—415. |
[40] | Pei S P, Zhao J, Sun Y, et al.2007. Upper mantle seismic velocities and anisotropy in China determined through Pn and Sn tomography[J]. Journal of Geophysical Research: Solid Earth, 112(B5): B05312. |
[41] | Rumpker G, Kaviani A, Latifi K.2014. Ps-splitting analysis for multilayered anisotropic media by azimuthal stacking and layer stripping[J]. Geophysical Journal International, 199(1): 146—163. |
[42] | Sayers C M.1994. The elastic anisotropy of shales[J]. Journal of Geophysical Research, 99(B1): 767—774. |
[43] | Silver P G.1996. Seismic anisotropy beneath the continents: Probing the depths of geology[J]. Annual Review of Earth and Planetary Sciences, 24(1): 385—432. |
[44] | Silver P G, Chan W W.1991. Shear wave splitting and subcontinental mantle deformation[J]. Journal of Geophysical Research: Solid Earth, 96(B10): 16429—16454. |
[45] | Simons J P, Hilst R D V D, Montagner F J, et al.2002. Multimode Rayleigh wave inversion for heterogeneity and azimuthal anisotropy of the Australian upper mantle[J]. Geophysical Journal International, 151(3): 738—754. |
[46] | Sun Y, Liu J, Zhou K, et al.2015. Crustal structure and deformation under the Longmenshan and its surroundings revealed by receiver function data[J]. Physics of the Earth and Planetary Interiors, 244:11—22. |
[47] | Sun Y, Niu F, Liu H, et al.2012. Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data[J]. Earth and Planetary Science Letter, 349-350(4): 186—197. |
[48] | Wang Q, Niu F L, Gao Y, et al.2016. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data[J]. Geophysical Journal International, 204(1): 167—179. |
[49] | Wessel P, Smith W H F.1995. New version of the generic mapping tools[J]. Eos, Transactions American Geophysical Union, 76(33): 329. |
[50] | Wu J, Zhang Z J, Kong F S, et al.2015. Complex seismic anisotropy beneath western Tibet and its geodynamic implications[J]. Earth and Planetary Science Letters, 413:167—175. |
[51] | Yang Y H, Liang C T, Fang L, et al.2018. A comprehensive analysis on the stress field and seismic anisotropy in eastern Tibet[J]. Tectonics, 37(6): 1648—1657. |
[52] | Yang Y H, Liang C T, Li Z Q, et al.2017. Stress distribution near the seismic gap between Wenchuan and Lushan earthquakes[J]. Pure and Applied Geophysics, 174(6): 2257—2267. |
[53] | Yao H, Van D H R D, Montagner J.2010. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J]. Journal of Geophysical Research: Solid Earth, 115(B12): B12307. |
[54] | Yu Y, Chen Y J.2016. Seismic anisotropy beneath the southern Ordos block and the Qinling-Dabieorogen, China: Eastward Tibetan asthenospheric flow around the southern Ordos[J]. Earth and Planetary Science Letter, 455:1—6. |
[55] | Zhao B, Huang Y, Zhang C H, et al.2015. Crustal deformation on the Chinese mainland during 1998—2004 based on GPS data[J]. Geodesy and Geodynamics, 6(1): 7—15. |
[56] | Zhao L, Zheng T, Lu G.2013. Distinct upper mantle deformation of cratons in response to subduction: Constraints from SKS wave splitting measurements in eastern China[J]. Gondwana Research, 23(1): 39—53. |
[57] | Zheng T, Ding Z F, Ning J Y, et al.2018. Crustal azimuthal anisotropy beneath the southeastern Tibetan plateau and its geodynamic implications[J]. Journal of Geophysical Research: Solid Earth, 123(11): 9733—9749. doi: 10.1029/2018JB015995. |
[58] | Zhu L, Kanamori H.2000. Moho depth variation in southern California from teleseismic receiver functions[J]. Journal of Geophysical Research: Solid Earth, 105(B2): 2969—2980. |
[1] | 杨建文, 金明培, 茶文剑, 张天继, 叶泵. 利用接收函数两步反演法研究小江断裂带及邻区地壳S波速度结构[J]. 地震地质, 2023, 45(1): 190-207. |
[2] | 宋婷, 沈旭章, 梅秀苹, 焦煜媛, 李敏娟, 苏小芸, 季婉婧. 利用接收函数频率特征研究青藏高原东北缘地区的莫霍面性质[J]. 地震地质, 2022, 44(5): 1290-1312. |
[3] | 潘纪顺, 李朋辉, 段永红, 赵延娜, 彭诣淙, 孙凯旋. 华北克拉通中西部地区的地壳结构研究[J]. 地震地质, 2021, 43(5): 1269-1291. |
[4] | 顾勤平, 康清清, 张鹏, 孟科, 吴珊珊, 李正楷, 王俊菲, 黄群, 蒋新, 李大虎. 郯庐断裂带中南段及邻区Rayleigh波相速度与方位各向异性[J]. 地震地质, 2020, 42(5): 1129-1152. |
[5] | 解滔, 卢军. 横向不均匀性对视电阻率各向异性变化的影响和地震前电阻率的变化深度[J]. 地震地质, 2020, 42(5): 1172-1187. |
[6] | 顾勤平, 许汉刚, 晏云翔, 赵启光, 李丽梅, 孟科, 杨浩, 王金艳, 蒋新, 马董伟. 郯庐断裂带新沂段地壳浅部结构和断裂活动性探测[J]. 地震地质, 2020, 42(4): 825-843. |
[7] | 唐明帅, 王海涛, 魏芸芸, 李艳永, 葛粲, 王琼, 苏金波, 魏斌. 2012年新源-和静MS6.6地震前后地壳介质泊松比变化[J]. 地震地质, 2019, 41(5): 1123-1135. |
[8] | 商咏梅, 杨彧, 杨晓松. 岩石圈主要各向异性矿物的CPO特征及其对岩石圈动力学研究的启示[J]. 地震地质, 2019, 41(3): 704-725. |
[9] | 谈洪波, 申重阳, 玄松柏, 吴桂桔, 杨光亮, 汪健. 鲁甸MS6.5地震孕育环境的重力学分析[J]. 地震地质, 2017, 39(2): 356-373. |
[10] | 安张辉, 詹艳, 陈小斌, 姜峰, 高悦. 滑动自相关方法在地电阻率观测资料分析中的应用初探[J]. 地震地质, 2016, 38(4): 1019-1029. |
[11] | 王林, 周青云, 王峻, 李文巧, 周连庆, 陈翰林, 苏鹏, 梁朋. 基于深部地震资料与地表变形资料的芦山地震发震构造研究[J]. 地震地质, 2016, 38(2): 458-476. |
[12] | 王鑫, 张景发, 付萍杰, 高敏. 沂沭断裂带重力场及地壳结构特征[J]. 地震地质, 2015, 37(3): 731-747. |
[13] | 杨光亮, 申重阳, 谈洪波, 王嘉沛, 吴桂桔. 云南鲁甸MS6.5地震震区地壳密度结构特征[J]. 地震地质, 2014, 36(4): 1145-1156. |
[14] | 李永华, 徐小明, 张恩会, 高家乙. 青藏高原东南缘地壳结构及云南鲁甸、景谷地震深部孕震环境[J]. 地震地质, 2014, 36(4): 1204-1216. |
[15] | 刘贵, 周永胜, 石耀霖. 先存组构对各向异性岩石流变强度的影响[J]. 地震地质, 2014, 36(3): 918-928. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||