地震地质 ›› 2020, Vol. 42 ›› Issue (1): 79-94.DOI: 10.3969/j.issn.0253-4967.2020.01.006
收稿日期:
2019-05-08
出版日期:
2020-02-20
发布日期:
2020-06-17
通讯作者:
任俊杰
作者简介:
〔作者简介〕 苏强, 男, 1993年生, 现为中国地震局地壳应力研究所固体地球物理学专业在读硕士研究生, 主要从事活动构造和构造地貌的定量研究, E-mail: suqiang17@mails.ucas.ac.cn。
基金资助:
SU Qiang(), REN Jun-jie(), LIANG Ou-bo, GUO Fei
Received:
2019-05-08
Online:
2020-02-20
Published:
2020-06-17
摘要:
洪积扇是干旱—半干旱地区最普遍、 最基本的地貌, 洪积扇地貌面记录了第四纪以来构造活动、 气候变化的重要信息, 为构造运动、 古环境和地貌演化等方面的研究提供参考, 但目前缺少可靠的区域洪积扇地貌面定量分期方法。 洪积扇地貌面的粗糙度是地貌演化过程中一个重要的特征。 本研究利用合成孔径雷达(SAR)技术, 选择公开的空间分辨率为15m的L波段ALOS PALSAR数据, 采用横剖面线法获得不同级洪积扇地貌面的后向散射系数, 实现阿尔金断裂带西段莫勒切河洪积扇地貌面的大范围定量分期。 结果表明: 1)L波段HH极化方式的SAR数据对洪积扇地貌面的粗糙度特征敏感, 适合划分莫勒切河地区不同级的洪积扇地貌面; 2)在相对平坦的干旱—半干旱地区, SAR数据的后向散射系数主要表征地表的粗糙度, 利用后向散射系数可对洪积扇地貌面进行大范围定量分期; 3)SAR数据的后向散射系数为划分不同级的洪积扇地貌面提供了一种定量参考指标, 可减少因洪积扇地貌面的空间分布不连续导致的地貌面分期误差。
中图分类号:
苏强, 任俊杰, 梁欧博, 郭菲. 基于ALOS PALSAR影像的莫勒切河洪积扇地貌面定量分期[J]. 地震地质, 2020, 42(1): 79-94.
SU Qiang, REN Jun-jie, LIANG Ou-bo, GUO Fei. QUANTITATIVE MAPPING OF THE MOLEQIE RIVER ALLUVIAL FAN MORPHOLOGIC UNITS IN CHINA BASED ON ALOS PALSAR DATA[J]. SEISMOLOGY AND GEOLOGY, 2020, 42(1): 79-94.
图 4 不同极化方式下剖面线的后向散射强度与地貌面划分结果a HH极化; b HV极化, 剖面线见图 3b。AC 活动河道; F0第一级地貌面; F1第二级地貌面; F2第三级地貌面
Fig. 4 The backscatter coefficients of profiles and interpretation results of geomorphic units under different polarizations.
图 5 不同极化方式下地貌面的后向散射系数结果a HH极化方式; b HV极化方式。AC 活动河道; F0第一级地貌面; F1第二级地貌面; F2第三级地貌面
Fig. 5 Backscatter coefficients of geomorphic units under different polarizations.
图 9 坡度(a)、 起伏度(b)、 切割度(c)、 S和SI的差值变化曲线(d)
Fig. 9 Slope(a), local relief(b), degree of dissection(c), and the curve of difference value betwen S and SI(d).
[1] | 陈曦. 2010. 中国干旱区自然地理 [M]. 北京: 科学出版社. |
CHEN Xi.2010. Physical Geography of Arid Land in China [M]. Science Press, Beijing(in Chinese). | |
[2] | 邵芸, 吕远, 董庆, 等. 2002. 含水含盐土壤的微波介电特性分析研究[J]. 遥感学报, 6(6): 416—423. |
SHAO Yun, LÜ Yuan, DONG Qing, et al.2002. Study on soil microwave dielectric characteristic as salinity and water content[J]. Journal of Remote Sensing, 6(6): 416—423(in Chinese). | |
[3] | 苏娟. 2014. 遥感图像获取与处理 [M]. 北京: 清华大学出版社. |
SU Juan.2014. Remote Sensing Image Acquisition and Processing [M]. Tsinghua University Press, Beijing(in Chinese). | |
[4] | 王玲, 吕新. 2009. 基于DEM的新疆地势起伏度分析[J]. 测绘科学, 34(1): 113—116. |
WANG Ling, LÜ Xin.2009. Analysis of the relief amplitude in Xinjiang based on Digital Elevation Model[J]. Science of Surveying and Mapping, 34(1): 113—116(in Chinese). | |
[5] | 王萍, 卢演俦, 丁国瑜, 等. 2004. 甘肃疏勒河冲积扇发育特征及其对构造活动的响应[J]. 第四纪研究, 24(1): 74—81. |
WANG Ping, LU Yan-chou, DING Guo-yu, et al.2004. Response of the development of the Shule River alluvial fan to tectonic activity[J]. Quaternary Sciences, 24(1): 74—81(in Chinese). | |
[6] | 徐锡伟, 韩竹军, 杨晓平, 等. 2016. 中国及邻近地区地震构造图[CM]. 北京: 地震出版社. |
XU Xi-wei, HAN Zhu-jun, YANG Xiao-ping, et al.2016. Seismotectonic Map of China and Its Adjacent Regions[CM].Seismological Press, Beijing(in Chinese). | |
[7] | 杨虎. 2003. 植被覆盖地表土壤水分变化雷达探测模型和应用研究 [D]. 北京: 中国科学院遥感应用研究所. |
YANG Hu.2003. On the modeling of canopy covered surface soil moisture change detection using multi-temporal radar images [D]. Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing(in Chinese). | |
[8] | 郑荣章. 2005. 阿尔金构造系晚更新世中晚期以来的构造隆升及其变形机制 [D]. 北京: 中国地震局地质研究所. |
ZHENG Rong-zhang.2005. Tectonic uplift and deformation mechanism of the Altyn structural system since the middle-late period of late Pleistocene time [D]. Institute of Geology, China Earthquake Administration, Beijing(in Chinese). | |
[9] | 郑荣章, 徐锡伟, 马文涛, 等. 2011. 阿尔金断裂带西段莫勒切河河口阶地的构造及气候意义[J]. 地震地质, 33(2): 323—334. doi: 10.3969/j.issn.0253-4967.2011.02.006. |
ZHENG Rong-zhang, XU Xi-wei, MA Wen-tao, et al.2011. Tectonic and climatic signification of terraces at the outlet of Moleqiehe River, the western segment of Altyn Tagh fault zone[J]. Seismology and Geology, 33(2): 323—334(in Chinese). | |
[10] | 周成虎, 程维明, 钱金凯. 2009. 数字地貌遥感解析与制图 [M]. 北京: 科学出版社. |
ZHOU Cheng-hu, CHENG Wei-ming, QIAN Jin-kai.2009. Remote Sensing Analysis and Mapping of Digital Geomorphology [M]. Science Press, Beijing(in Chinese). | |
[11] | Amit R, Gerson R, Yaalon D H.1993. Stages and rate of the gravel shattering process by salts in desert Reg soils[J]. Geoderma, 57(3): 295—324. |
[12] | Beaudoin A, Toan T L, Gwyn Q H J.1990. SAR observations and modeling of the C-band backscatter variability due to multiscale geometry and soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 28(5): 886—895. |
[13] | Brooke S A S, Whittaker A C, Armitage J J, et al.2018. Quantifying sediment transport dynamics on alluvial fans from spatial and temporal changes in grain size, Death Valley, California[J]. Journal of Geophysical Research: Earth Surface, 123(8): 2039—2067. |
[14] | Bull W B.1991. Geomorphic Response to Climatic Change [M]. Oxford University Press, New York. |
[15] | Cartwright R J, Burr D M.2017. Using Synthetic Aperture Radar data of terrestrial analogs to test alluvial fan formation mechanisms on Titan[J]. Icarus, 284:183—205. |
[16] | Catalano S, Bonforte A, Guglielmino F, et al.2013. The influence of erosional processes on the visibility of Permanent Scatterers Features from SAR remote sensing on Mount Etna(E Sicily)[J]. Geomorphology, 198(17): 128—137. |
[17] | Coppo P, Luzi G, Schiavon G.1995. Understanding microwave surface backscattering of bare soil by comparing models and experimental data collected during two different airborne campaigns[C]. 1995 International Geoscience and Remote Sensing Symposium, IGARSS'95.Quantitative Remote Sensing for Science and Applications. IEEE, 2:1346—1348. |
[18] | Crouvi O, Ben-Dor E, Beyth M, et al.2006. Quantitative mapping of arid alluvial fan surfaces using field spectrometer and hyperspectral remote sensing[J]. Remote Sensing of Environment, 104(1): 103—117. |
[19] | D’Arcy M, Mason P J, Roda-Boluda D C, et al.2018. Alluvial fan surface ages recorded by Landsat-8 imagery in Owens Valley, California[J]. Remote Sensing of Environment, 216:401—414. |
[20] | D’Arcy M, Whittaker A C, Roda-Boluda D C.2017. Measuring alluvial fan sensitivity to past climate changes using a self-similarity approach to grain-size fining, Death Valley, California[J]. Sedimentology, 64(2): 388—424. |
[21] | Escorihuela M J, Kerr Y H, Rosnay P D, et al.2007. A simple model of the bare soil microwave emission at L-Band[J]. IEEE Transactions on Geoscience and Remote Sensing, 45(7): 1978—1987. |
[22] | Evans D L, Farr T G, Van Zyl J J.1992. Estimates of surface roughness derived from synthetic aperture radar(SAR)data[J]. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 382—389. |
[23] | Fan L, Atkinson P M.2018. A new multi-resolution based method for estimating local surface roughness from point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 144:369—378. |
[24] | Farr T G, Chadwick O A.1996. Geomorphic processes and remote sensing signatures of alluvial fans in the Kun Lun Mountains, China[J]. Journal of Geophysical Research: Planets, 101(10): 23091—23100. |
[25] | Frankel K L, Dolan J F.2007. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data[J]. Journal of Geophysical Research: Earth Surface, 112: F02025. |
[26] | Fung A K, Li Z, Chen K S.1992. Backscattering from a randomly rough dielectric surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 356—369. |
[27] | Gillespie A, Kahle A, Palluconi F.1984. Mapping alluvial fans in Death Valley, California, using multichannel thermal infrared images[J]. Geophysical Research Letters, 11(11): 1153—1156. |
[28] | Greeley R, Lancaster N, Sullivan R J, et al.1988. A relationship between radar backscatter and aerodynamic roughness: Preliminary results[J]. Geophysical Research Letters, 15(6): 565—568. |
[29] | Hardgrove C, Moersch J, Whisner S.2009. Thermal imaging of alluvial fans: A new technique for remote classification of sedimentary features[J]. Earth and Planetary Science Letters, 285(1-2): 124—130. |
[30] | Hetz G, Mushkin A, Blumberg D G, et al.2016. Estimating the age of desert alluvial surfaces with spaceborne radar data[J]. Remote Sensing of Environment, 184:288—301. |
[31] | Huggett R J.2016. Fundamentals of Geomorphology[M]. Routledge, London, New York. |
[32] | Mushkin A, Sagy A, Trabelci E, et al.2014. Measuring the time and scale-dependency of subaerial rock weathering rates over geologic time scales with ground-based lidar[J]. Geology, 42(12): 1063—1066. |
[33] | Regmi N R, McDonald E V, Bacon S N.2014. Mapping Quaternary alluvial fans in the southwestern United States based on multiparameter surface roughness of lidar topographic data[J]. Journal of Geophysical Research: Earth Surface, 119(1): 12—27. |
[34] | Ritter J B, Miller J R, Enzel Y, et al.1993. Quaternary evolution of Cedar Creek alluvial fan, Montana[J]. Geomorphology, 8(4): 287—304. |
[35] | Sadeh Y, Cohen H, Maman S, et al.2018. Evaluation of Manning’s n roughness coefficient in arid environments by using SAR backscatter[J]. Remote Sensing, 10(10): 1505. |
[36] | Schwanghart W, Scherler D.2014. Short Communication: TopoToolbox 2-MATLAB-based software for topographic analysis and modeling in earth surface sciences[J]. Earth Surface Dynamics, 2:1—7. |
[37] | Stock J D.2013. 9.23 Waters Divided: A history of alluvial fan research and a view of its future [J]∥Shroder J F, Wohl E(eds). Treatise on geomorphology, fluvial geomorphology. Academic Press, Elsevier, San Diego, 9:413—458. |
[38] | Ulaby F T, Bengal T H, Dobson M C, et al.1990. Microwave dielectric properties of dry rocks[J]. IEEE Transactions on Geoscience and Remote Sensing, 28(3): 325—336. |
[39] | Ulaby F T, Bradley G A, Dobson M C.1979. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture(Part Ⅱ): Vegetation-covered soil[J]. IEEE Transactions on Geoscience Electronics, 17(2): 33—40. |
[40] | Weeks R J, Smith M, Pak K, et al.1996. Surface roughness, radar backscatter, and visible and near-infrared reflectance in Death Valley, California[J]. Journal of Geophysical Research: Planets, 101(E10): 23077—23090. |
[41] | Wu J, Yang Q K, Li Y R.2018. Partitioning of terrain features based on roughness[J]. Remote Sensing, 10(12): 1985. |
[42] | Zani H, Assine M L, Mcglue M M.2012. Remote sensing analysis of depositional landforms in alluvial settings: Method development and application to the Taquari megafan, Pantanal(Brazil)[J]. Geomorphology, 161-162:82—92. |
[43] | Zhang L, Guo H D.2013. The temporal-spatial distribution of Shule River alluvial fan units in China based on SAR data and OSL dating[J]. Remote Sensing, 5(12): 6997—7016. |
[44] | Zhu L J, Walker J P, Nan Y, et al.2019. Roughness and vegetation change detection: A pre-processing for soil moisture retrieval from multi-temporal SAR imagery[J]. Remote Sensing of Environment, 225:93—106. |
[45] | Zribi M, Baghdadi N, Holah N, et al.2005. Evaluation of a rough soil surface description with ASAR-ENVISAT radar data[J]. Remote Sensing of Environment, 95(1): 67—76. |
[1] | 张波, 王爱国, 田勤俭, 葛伟鹏, 贾伟, 姚赟胜, 袁道阳. 基于ALOS-PALSAR DEM的山体阴影图识别断裂线性——以西秦岭地区为例[J]. 地震地质, 2022, 44(1): 130-149. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||