地震地质 ›› 2020, Vol. 42 ›› Issue (1): 33-49.DOI: 10.3969/j.issn.0253-4967.2020.01.003
收稿日期:
2019-09-24
出版日期:
2020-02-20
发布日期:
2020-06-17
通讯作者:
杨志强
作者简介:
〔作者简介〕 田镇, 男, 1990年生, 2016年于长安大学获大地测量学与测量工程专业硕士学位, 长安大学大地测量学与测量工程专业在读博士研究生, 主要从事地壳形变监测与地球动力学研究, E-mail: zhen.tian1990@hotmail.com。
基金资助:
TIAN Zhen1)(), YANG Zhi-qiang1)(), WANG Shi-di2)
Received:
2019-09-24
Online:
2020-02-20
Published:
2020-06-17
摘要:
喜马拉雅东构造结是研究青藏高原构造演化的关键地区, 地震活动频繁。 文中基于地震矩平衡理论, 利用GPS资料与历史地震目录分析东构造结地区的地震矩亏损, 继而评估该区未来的地震活动。 结果表明: 研究区总体的地震矩累积率高于青藏高原的平均水平, 近200a内的累积总量达(1.15±0.03)×1022N·m, 明显高于地震矩的释放总量(5.50±2.54)×1021N·m。 而地震矩亏损量最高的主前缘断裂不丹段具备发生MW8.1以上地震的可能, 那加山断裂及嘉黎断裂通麦段则不排除未来发生震级大于MW7.5与MW7.3地震的可能, 其余断层发生强震(MW7.1以上)的概率相对较低。 而对于米什米断层与主前缘断层东段, 虽然察隅MS8.6地震发生于此, 但这2条断层未来的地震危险性仍不容忽视, 且无论察隅地震发生于哪条断层, 其复发周期均为660~1 030a。
中图分类号:
田镇, 杨志强, 王师迪. 喜马拉雅东构造结主要断裂的地震矩亏损与危险性评估[J]. 地震地质, 2020, 42(1): 33-49.
TIAN Zhen, YANG Zhi-qiang, WANG Shi-di. MOMENT DEFICITS ON THE MAJOR FAULTS AND EARTHQUAKE HAZARD ASSESSMENT IN THE EASTERN HIMALAYAN SYNTAXIS[J]. SEISMOLOGY AND GEOLOGY, 2020, 42(1): 33-49.
图1 a 东构造结地区的构造背景与历史地震(M≥4); b 6级以上地震的次数及其释放的地震矩(M0) 数据 I: 来自USGS、 ISC; 数据 Ⅱ: 来自国家地震局震害防御司(1995); 数据 Ⅲ: 来自其它文献资料(见2.1节)。黑色实线为主要断裂带在地表的展布(Gupta et al., 2015)。 MFT 喜马拉雅主前缘断层; YZS 雅鲁藏布江缝合带;JLF 嘉黎断裂; MTF 墨脱断裂; MSMT 米什米断裂; NGF 那加山断裂; SF 实皆断裂
Fig. 1 a Tectonic setting and seismicity of the Eastern Himalayan Syntaxis(M≥4); b The number and the moment(M0)time series of the earthquakes(M>6).
图2 GPS速度场分布(欧亚基准, 误差椭圆代表90%置信区间) 不同颜色的箭头代表不同来源的速度场资料: 紫色来自唐方头等(2010); 蓝色来自Devachandra等(2014); 红色来自Gupta等(2015); 绿色来自Zheng等(2017)。 速度场的比例一致。 白色实线代表研究区内主要断裂的展布,黑色实线代表微块体模型的边界
Fig. 2 GPS velocities in the study area(relative to the stable Eurasia, error ellipses represent the 90% confidence level).
图3 融合后的速度场分布(欧亚基准)与断层现今的走向运动速率(a); 微块体模型的残差分布与断层的倾向运动速率(误差椭圆代表90%置信区间)(b); 残差统计直方图(c)
Fig. 3 Combined GPS velocities(relative to the stable Eurasia)and strike-slip rates on the major faults(a);Residuals of the micro-block model and the dip-slip rates(error ellipses represent the 90%confidence level)(b);Histogram of residuals(c).
图 6 矩心矩张量分布(a)及体波震级mb(b)、 面波震级MS(c)与地震矩M0的线性关系
Fig. 6 Centroid moment tensor from GCMT in the study area(a), the linear relation between scalar moment and the body-wave(b), and the surface-wave magnitude(c).
图 7 研究区自1800AD以来的地震矩累积量(a)与释放量(b)(单位:N·m) b 大括号标出段表示察隅MS8.6地震的潜在发震断层
Fig. 7 Moment accumulation(a)and release(b)since 1800AD in the study area(unit:N·m).
[1] | 陈培善, 白彤霞, 李保昆. 2003. b 值和地震复发周期[J]. 地球物理学报, 46(4): 510—519. |
CHEN Pei-shan, BAI Tong-xia, LI Bao-kun.2003. b-value and earthquake occurrence period[J]. Chinese Journal of Geophysics, 46(4): 510—519(in Chinese). | |
[2] | 陈运泰, 刘瑞丰. 2018. 矩震级及其计算[J]. 地震地磁观测与研究, 39(2): 1—9. |
CHEN Yun-tai, LIU Rui-feng.2018. Moment magnitude and its calculation[J]. Seismological and Geomagnetic Observation and Research, 39(2): 1—9(in Chinese). | |
[3] | 程成, 白玲, 丁林, 等. 2017. 利用接收函数方法研究喜马拉雅东构造结地区地壳结构[J]. 地球物理学报, 60(8): 2969—2979. |
CHENG Cheng, BAI Ling, DING Lin, et al.2017. Crustal structure of Eastern Himalayan Syntaxis revealed by receiver function method[J]. Chinese Journal of Geophysics, 60(8): 2969—2979(in Chinese). | |
[4] | 邓起东, 张培震, 冉勇康, 等. 2003. 中国活动构造与地震活动[J].地学前缘, 10(S1): 66—73. |
DENG Qi-dong, ZHANG Pei-zheng, RAN Yong-kang, et al.2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers, 10(Sl): 66—73(in Chinese). | |
[5] | 国家地震局震害防御司. 1995. 中国历史强震目录(公元前23世纪—公元1911年)[M]. 北京: 地震出版社. |
Department of Earthquake Disaster Prevention, State Seismological Bureau. 1995. The Catalogue of Chinese Historical Strong Earthquakes(23th Century BC—1911AD)[M]. Seismological Press, Beijing(in Chinese). | |
[6] | 康国发, 高国明, 白春华, 等. 2013. 喜马拉雅东构造结周边地区地壳磁异常分布特征研究[J]. 地球物理学报, 56(11): 3877—3886. |
KANG Guo-fa, GAO Guo-ming, BAI Chun-hua, et al.2013. Study on distribution features of crustal magnetic anomalies around eastern Himalayan syntaxis[J]. Chinese Journal of Geophysics, 56(11): 3877—3886(in Chinese). | |
[7] | 李煜航, 郝明, 季灵运, 等. 2014. 青藏高原东缘中南部主要活动断裂滑动速率及其地震矩亏损[J]. 地球物理学报, 57(4): 1062—1078. |
LI Yu-hang, HAO Ming, JI Ling-yun, et al.2014. Fault slip rate and seismic moment deficit on major active faults in mid and south part of the eastern margin of Tibet plateau[J]. Chinese Journal of Geophysics, 57(4): 1062—1078(in Chinese). | |
[8] | 刘代芹, Liu M, 王海涛, 等. 2016. 天山地震带境内外主要断层滑动速率和地震矩亏损分布特征研究[J]. 地球物理学报, 59(5): 1647—1660. |
LIU Dai-qin, Liu M, WANG Hai-tao, et al.2016. Slip rates and seismic moment deficits on major faults in the Tianshan region[J]. Chinese Journal of Geophysics, 59(5): 1647—1660(in Chinese). | |
[9] | 马晓静, 高祥林. 2011. 横跨喜马拉雅造山带的构造运动转换与变形分配[J]. 地球物理学报, 54(6): 1528—1535. |
MA Xiao-jing, GAO Xiang-lin.2011. Transformation of tectonic movement and deformation partitioning across the Himalayan orogenic belt[J]. Chinese Journal of Geophysics, 54(6): 1528—1535(in Chinese). | |
[10] | 史海霞, 孟令媛, 张雪梅, 等. 2018. 汶川地震前的b值变化[J]. 地球物理学报, 61(5): 1874—1882. |
SHI Hai-xia, MENG Ling-yuan, ZHANG Xue-mei, et al.2018. Decrease in b-value prior to the Wenchuan earthquake[J]. Chinese Journal of Geophysics, 61(5): 1874—1882(in Chinese). | |
[11] | 宋键, 唐方头, 邓志辉, 等. 2011. 喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究[J]. 地球物理学报, 54(6): 1536—1548. |
SONG Jian, TANG Fang-tou, DENG Zhi-hui, et al.2011. Study on current movement characteristics and numerical simulation of the main faults around Eastern Himalayan Syntaxis[J]. Chinese Journal of Geophysics, 54(6): 1536—1548(in Chinese). | |
[12] | 唐方头, 宋键, 曹忠权, 等. 2010. 最新GPS数据揭示的东构造结周边主要断裂带的运动特征[J]. 地球物理学报, 53(9): 2119—2128. |
TANG Fang-tou, SONG Jian, CAO Zhong-quan, et al.2010. The movement characters of main faults around Eastern Himalayan Syntaxis revealed by the latest GPS data[J]. Chinese Journal of Geophysics, 53(9): 2119—2128(in Chinese). | |
[13] | 谢超, 杨晓平, 黄雄南, 等. 2016. 东喜马拉雅构造结墨脱断裂晚第四纪活动地质证据的发现[J]. 地震地质, 38(4): 1095—1106. doi: 10.3969/j.issn.0253-4967.2016.04.023. |
XIE Chao, YANG Xiao-ping, HUANG Xiong-nan, et al.2016. Geological evidences of late Quaternary activity of Motuo Fault in Eastern Himalayan Syntaxis[J]. Seismology and Geology, 38(4): 1095—1106(in Chinese). | |
[14] | 尹凤玲, 韩立波, 蒋长胜, 等. 2018. 2017年米林6.9级地震与1950年察隅8.6地震的关系及2次地震对周边活动断层的影响[J]. 地球物理学报, 61(8): 3185—3197. |
YIN Feng-ling, HAN Li-bo, JIANG Chang-sheng, et al.2018. Interaction between the 2017 M6.9 Mainling earthquake and the 1950 M8.6 Zayu earthquake and their impacts on surrounding major active faults[J]. Chinese Journal of Geophysics, 61(8): 3185—3197(in Chinese). | |
[15] | 占伟, 武艳强, 梁洪宝, 等. 2015. GPS观测结果反映的尼泊尔MW7.8地震孕震特征[J]. 地球物理学报, 58(5): 1818—1826. |
ZHAN Wei, WU Yan-qiang, LIANG Hong-bao, et al.2015. Characteristics of the seismogenic model for the 2015 Nepal MW7.8 earthquake derived from GPS data[J]. Chinese Journal of Geophysics, 58(5): 1818—1826(in Chinese). | |
[16] | Ader T, Avouac J P, Liu-Zeng J, et al.2012. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard[J]. Journal of Geophysical Research: Solid Earth, 117(B4): 1—11. |
[17] | Ambraseys N N, Douglas J.2004. Magnitude calibration of north Indian earthquakes[J]. Geophysical Journal International, 159(1): 165—206. |
[18] | Bai L, Li G, Khan N G, et al.2017. Focal depths and mechanisms of shallow earthquakes in the Himalayan-Tibetan region[J]. Gondwana Research, 41:390—399. |
[19] | Bettinelli P, Avouac J P, Flouzat M, et al.2006. Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements[J]. Journal of Geodesy, 80(8-11): 567—589. |
[20] | Bilham R, Larson K, Freymueller J.1997. GPS measurements of present-day convergence across the Nepal Himalaya[J]. Nature, 386(6620): 61—64. |
[21] | Bird P, Kagan Y Y.2004. Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings[J]. Bulletin of the Seismological Society of America, 94(6): 2380—2399. |
[22] | Bonilla M G, Mark R K, Lienkaemper J J.1984. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement[J]. Bulletin of the Seismological Society of America, 74(6): 2379—2411. |
[23] | Chandra U.1978. Seismicity, earthquake mechanisms and tectonics along the Himalayan mountain range and vicinity[J]. Physics of the Earth and Planetary Interiors, 16(2): 109—131. |
[24] | Chen W, Molnar P.1977. Seismic moments of major earthquakes and the average rate of slip in central Asia[J]. Journal of Geophysical Research, 82(20): 2945—2969. |
[25] | Chen W P, Molnar P.1990. Source parameters of earthquakes and intraplate deformation beneath the Shillong Plateau and the Northern Indoburman Ranges[J]. Journal of Geophysical Research: Solid Earth, 95(B8): 12527—12552. |
[26] | Chousianitis K, Ganas A, Evangelidis C P.2015. Strain and rotation rate patterns of mainland Greece from continuous GPS data and comparison between seismic and geodetic moment release[J]. Journal of Geophysical Research: Solid Earth, 120(5): 3909—3931. |
[27] | D’Agostino N.2014. Complete seismic release of tectonic strain and earthquake recurrence in the Apennines(Italy)[J]. Geophysical Research Letters, 41(4): 1155—1162. |
[28] | Devachandra M, Kundu B, Catherine J, et al.2014. Global Positioning System(GPS)measurements of crustal deformation across the frontal eastern Himalayan syntaxis and seismic-hazard assessment[J]. Bulletin of the Seismological Society of America, 104(3): 1518—1524. |
[29] | Elliott J R, Jolivet R, González P J, et al.2016. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake[J]. Nature Geoscience, 9(2): 174—180. |
[30] | Feldl N, Bilham R.2006. Great Himalayan earthquakes and the Tibetan plateau[J]. Nature, 444(7116): 165—170. |
[31] | Ge W P, Molnar P, Shen Z K, et al.2015. Present-day crustal thinning in the southern and northern Tibetan plateau revealed by GPS measurements[J]. Geophysical Research Letters, 42(13): 5227—5235. |
[32] | Gan W, Zhang P, Shen Z K, et al.2007. Present-day crustal motion within the Tibetan plateau inferred from GPS measurements[J]. Journal of Geophysical Research, 112(B8): B08416. |
[33] | Gupta T D, Riguzzi F, Dasgupta S, et al.2015. Kinematics and strain rates of the Eastern Himalayan Syntaxis from new GPS campaigns in Northeast India[J]. Tectonophysics, 655:15—26. |
[34] | Gutenberg B, Richter C F.1944. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 34(4): 185—188. |
[35] | Hanks T C, Kanamori H.1979. A moment magnitude scale[J]. Journal of Geophysical Research, 84(B5): 2348—2350. |
[36] | Harrison M T, Ryerson F J, Le Fort P.1997. A Late Miocene-Pliocene origin for the Central Himalayan inverted metamorphism[J]. Earth and Planetary Science Letters, 146(1-2): E1—E7. |
[37] | Holt W E, Ni J F, Wallace T C.1991. The active tectonics of the eastem Himalayan syntaxis and surrounding region[J]. Journal of Geophysical Research: Solid Earth, 96(B9): 14595—14632. |
[38] | Jenny S, Goes S, Giardini D, et al.2004. Earthquake recurrence parameters from seismic and geodetic strain rates in the eastern Mediterranean[J]. Geophysical Journal International, 157(3): 1331—1347. |
[39] | Krishna M R, Sanu T D.2000. Seismotectonics and rates of active crustal deformation in the Burmese arc and adjacent regions[J]. Journal of Geodynamics, 30(4): 401—421. |
[40] | Kreemer C, Blewitt G, Klein E C.2014. A geodetic plate motion and Global Strain Rate Model[J]. Geochemistry, Geophysics, Geosystems, 15(10): 3849—3889. |
[41] | Larson M, Freymueller T.1999. Kinematics of the India-Eurasia collision zone from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 104(B1): 1077—1093. |
[42] | Liang S, Gan W, Shen C, et al.2013. Three-dimensional velocity field of present-day crustal motion of the Tibetan plateau derived from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 118(10): 5722—5732. |
[43] | Loveless J P, Meade B J.2011. Partitioning of localized and diffuse deformation in the Tibetan plateau from joint inversions of geologic and geodetic observations[J]. Earth and Planetary Science Letters, 303(1-2): 11—24. |
[44] | McCaffrey R, Qamar A I, King R W, et al.2007. Fault locking, block rotation and crustal deformation in the Pacific Northwest[J]. Geophysical Journal International, 169(3): 1315—1340. |
[45] | Meade B J.2007. Present-day kinematics at the India-Asia collision zone[J]. Geology, 35(1): 81—84. |
[46] | Meade B J, Hager B H.2005. Spatial localization of moment deficits in southern California[J]. Journal of Geophysical Research: Solid Earth, 110(4): 1—6. |
[47] | Molnar P, Pandey M R.1989. Rupture zones of great earthquakes in the Himalayan region[J]. Journal of Earth System Science, 98(1): 61—70. |
[48] | North-East Institute of Science and Technology.2013. Earthquake catalogue in and around north eastern region of India(including historical earthquakes)[R]. Jorhat, India. |
[49] | Royden L H, Burchfiel B C, Van Der Hilst R D.2008. The geological evolution of the Tibetan plateau[J]. Science, 321(5892): 1054—1058. |
[50] | Singh C, Singh A, Chadha R K.2009. Fractal and b-value mapping in eastern Himalaya and southern Tibet[J]. Bulletin of the Seismological Society of America, 99(6): 3529—3533. |
[51] | Stevens V L, Avouac J P.2015. Interseismic coupling on the main Himalayan thrust[J]. Geophysical Research Letters, 42(14): 5828—5837. |
[52] | Tapponnier P, Peltzer G, Le Dain A Y, et al.1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611—616. |
[53] | Tian Z, Yang Z, Bendick R, et al.2019. Present-day distribution of deformation around the southern Tibetan plateau revealed by geodetic and seismic observations[J]. Journal of Asian Earth Sciences, 171:321—333. |
[54] | Vernant P, Bilham R, Szeliga W, et al.2014. Clockwise rotation of the Brahmaputra Valley relative to India: Tectonic convergence in the eastern Himalaya, Naga Hills, and Shillong Plateau[J]. Journal of Geophysical Research: Solid Earth, 119(8): 6558—6571. |
[55] | Wang H, Liu M, Cao J.2011. Slip rates and seismic moment deficits on major active faults in mainland China[J]. Journal of Geophysical Research: Solid Earth, 116(2): 1—17. |
[56] | Wang H, Liu M, Shen X, et al.2010. Balance of seismic moment in the Songpan-Ganze region, eastern Tibet: Implications for the 2008 great Wenchuan earthquake[J]. Tectonophysics, 491(1-4): 154—164. |
[57] | Wang Y, Wang M, Shen Z K.2017. Block-like versus distributed crustal deformation around the northeastern Tibetan plateau[J]. Journal of Asian Earth Sciences, 140:31—47. |
[58] | Wells D L, Coppersmith K J.1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974—1002. |
[59] | Zheng G, Wang H, Wright T J, et al.2017. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 122(11): 9290—9312. |
[1] | 蒋锋云, 季灵运, 朱良玉, 刘传金. 联合GPS和InSAR研究海原-六盘山断裂现今的地壳变形特征[J]. 地震地质, 2023, 45(2): 377-400. |
[2] | 杨源源, 李鹏飞, 路硕, 疏鹏, 潘浩波, 方良好, 郑海刚, 赵朋, 郑颖平, 姚大全. 郯庐断裂带中段F5断裂淮河-女山湖段的古地震与垂直滑动速率[J]. 地震地质, 2022, 44(6): 1365-1383. |
[3] | 张秀丽, 熊建国, 张培震, 刘晴日, 姚勇, 钟岳志, 张会平, 李有利. 中更新世晚期以来中条山北麓断层滑动速率研究[J]. 地震地质, 2022, 44(6): 1403-1420. |
[4] | 华俊, 龚文瑜, 单新建, 王振杰, 季灵运, 刘传金, 李永生. 多轨道InSAR震间形变速率场拼接方法[J]. 地震地质, 2022, 44(5): 1172-1189. |
[5] | 张国庆, 祝意青, 梁伟锋. 青藏高原东缘扶边河断裂周边地壳密度及垂向构造应力特征[J]. 地震地质, 2022, 44(3): 578-589. |
[6] | 邵延秀, 刘静, 高云鹏, 王文鑫, 姚文倩, 韩龙飞, 刘志军, 邹小波, 王焱, 李云帅, 刘璐. 同震地表破裂的位移测量与弥散变形分析——以2021年青海玛多MW7.4地震为例[J]. 地震地质, 2022, 44(2): 506-523. |
[7] | 张驰, 李智敏, 任治坤, 刘金瑞, 张志亮, 武登云. 日月山断裂南段晚第四纪活动特征[J]. 地震地质, 2022, 44(1): 1-19. |
[8] | 闫小兵, 周永胜, 李自红, 扈桂让, 任瑞国, 郝雪景. 山西浮山断裂的晚第四纪活动与位移速率[J]. 地震地质, 2022, 44(1): 35-45. |
[9] | 万永魁, 沈小七, 刘瑞丰, 刘峡, 郑智江, 李媛, 张扬, 王雷. 川滇地区活动块体边界断裂现今运动和应力分布[J]. 地震地质, 2021, 43(6): 1614-1637. |
[10] | 刘瑞春, 张锦, 郭文峰, 陈慧, 郑亚迪, 成诚. 鄂尔多斯块体东南缘现今的变形特征与构造模式探讨[J]. 地震地质, 2021, 43(3): 540-558. |
[11] | 代成龙, 张玲, 梁诗明, 张克亮, 熊小慧, 甘卫军. 中亚塔拉斯-费尔干纳断裂现今的走滑速率及其分段变化特征——基于GPS观测的深究[J]. 地震地质, 2021, 43(2): 263-279. |
[12] | 张波, 田勤俭, 王爱国, 李文巧, 徐岳仁, 高泽民. 西秦岭临潭-宕昌断裂第四纪最新活动特征[J]. 地震地质, 2021, 43(1): 72-91. |
[13] | 朱爽, 梁洪宝, 魏文薪, 李经纬. 天山地震带主要活动断层现今的滑动速率及其地震矩亏损[J]. 地震地质, 2021, 43(1): 249-261. |
[14] | 陈健龙, 张冬丽, 周宇. 利用Envisat ASAR数据探讨渭河盆地断层现今的滑动速率[J]. 地震地质, 2020, 42(2): 333-345. |
[15] | 罗全星, 李传友, 任光雪, 李新男, 马字发, 董金元. 阳高-天镇断裂晚第四纪活动特征及滑动速率[J]. 地震地质, 2020, 42(2): 399-413. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||