地震地质 ›› 2016, Vol. 38 ›› Issue (2): 240-258.DOI: 10.3969/j.issn.0253-4967.2016.02.002
苏琦1, 袁道阳1,2, 谢虹1,2, 邵延秀1,2, 梁明剑3
收稿日期:
2014-06-26
修回日期:
2015-05-01
发布日期:
2016-08-11
通讯作者:
袁道阳,男,研究员,电话:0931-8276712,E-mail:daoyangy@163.com
作者简介:
苏琦,男,1990年生,2008年在西北大学地质学系获资源勘查工程专业学士学位,硕士研究生,研究方向为活动构造与构造地貌,电话:18810715875,E-mail:xbdsq11@163.com
基金资助:
SU Qi1, YUAN Dao-yang1,2, XIE Hong1,2, SHAO Yan-xiu1,2, LIANG Ming-jian3
Received:
2014-06-26
Revised:
2015-05-01
Published:
2016-08-11
摘要: 疏勒河流域盆地位于祁连山西段,跨越了该区多条不同方向和不同性质的活动断裂带,其所呈现的地貌特征反映了该区最新构造活动的信息。文中基于GIS空间分析技术,利用SRTM-3数字高程模型(DEM)数据,系统提取了疏勒河流域及其4个亚流域盆地的面积-高程积分曲线、疏勒河水系的Hack剖面以及河流坡降指标(SL),并对整个流域地形做了坡谱分析,获得了疏勒河流域的地貌特征。研究表明,疏勒河的流域地貌发育受到该区的阿尔金断裂、昌马断裂、托勒南山断裂以及疏勒南山断裂等强烈构造活动和区域岩性差异的影响,坡度以0°~35°的区段为主;整个流域盆地处于河流发育的"壮年期";构造活动是造成河流纵剖面发生改变的最主要因素,局部河段同时还受到岩性因素的控制和影响。这表明在活跃的造山带内部,河流地貌的发育过程中,活动断裂的构造作用是重要的控制因素。
中图分类号:
苏琦, 袁道阳, 谢虹, 邵延秀, 梁明剑. 祁连山西段疏勒河流域地貌特征及其构造意义[J]. 地震地质, 2016, 38(2): 240-258.
SU Qi, YUAN Dao-yang, XIE Hong, SHAO Yan-xiu, LIANG Ming-jian1. Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China;
2. Lanzhou National Observatory of Geophysic. GEOMORPHIC FEATURES OF THE SHULE RIVER DRAINAGE BASIN IN QILIANSHAN AND ITS INSIGHT INTO TECTONIC IMPLICATIONS[J]. SEISMOLOGY AND GEOLOGY, 2016, 38(2): 240-258.
陈彦杰. 2008. 台湾山脉的构造地形指标特性:以面积高度积分、地形碎形参数与河流坡降指标为依据[D]. 台南:国立成功大学. 1-84. CHEN Yan-jie. 2008. Morphotectonic features of Taiwan mountain belt based on hypsometric integral, topographic fractals and SL index[D]. Tainan:National Cheng Kung University. 1-84(in Chinese). 高嘉玲. 2010. 应用河流纵剖面分析研究台湾中央山脉东翼构造活动[D]. 花莲:国立东华大学. 1-60. GAO Jia-ling. 2010. Tectonic activity along the eastern flank of the central range in Taiwan:Inferences from geomorphic analyses[D]. Hualian:National Dong Hwa University. 1-60(in Chinese). 高明杰, 韩添丁, 王杰, 等. 2013. 疏勒河上游流域多年冻土区辐射变化分析[J]. 高原气象, 32(2):411-420. GAO Ming-jie, HAN Tian-ding, WANG Jie, et al. 2013. Variations of the components of radiation in permafrost region of the upstream of Shule River[J]. Plateau Meteorology, 32(2):411-420(in Chinese). 国家地震局地质研究所, 国家地震局兰州地震研究所. 1993. 祁连山-河西走廊活动断裂系[M]. 北京:地震出版社. 20-275. Institute of Geology, State Seismological Bureau, Lanzhou Institute of Seismology, State Seismological Bureau. 1993.The Qilian Mountains-Hexi Corridor Active Fault System[M]. Seismological Press, Beijing. 20-275 (in Chinese). 李德文, 崔之久. 2004. 岩溶夷平面演化与青藏高原隆升[J]. 第四纪研究, 24(1):58-63. LI De-wen, CUI Jiu-zhi. 2004. Karst planation surface and the Qinghai-Xizang Plateau uplift[J]. Quaternary Sciences, 24(1):58-63(in Chinese). 李奋生, 赵国华, 李勇, 等. 2015. 龙门山地区水系发育特征及其对青藏高原东缘隆升的指示[J]. 地质论评, 61(2):345-355. LI Fen-sheng, ZHAO Guo-hua, LI Yong, et al. 2015. The characteristics of drainage development in Longmen Mountains area and indication to the uplift of the eastern margin of Qinghai-Xizang(Tibet) Plateau[J]. Geological Review, 61(2):345-355(in Chinese). 李立波, 徐刚, 胡建民, 等. 2012. 基于 DEM 渭河上游流域的活动构造量化分析[J]. 第四纪研究, 32(5):866-879. LI Li-bo, XU Gang, HU Jian-min, et al. 2012. Quantitative analysis of the relative active tectonics of the upstreams region of Weihe River Basin on DEM[J]. Quaternary Sciences, 32(5):866-879(in Chinese). 李勇, 周荣军, Densmore A L, 等. 2006. 青藏高原大陆动力学过程与地质响应[M]. 北京:地质出版社. 92-130. LI Yong, ZHOU Rong-jun, Densmore A L, et al. 2006. The Geology of the Eastern Margin of the Qinghai-Tibet Plateau[M]. Geological Publishing House, Beijing. 92-130(in Chinese). 李准胜. 2009. 中台湾造山运动带河流纵剖面构造地形指标之量化分析[D]. 台北:国立中央大学. 1-70. LI Zhun-sheng. 2009. A quantitative analysis for tectonic geomorphology indices of longitudinal river profile on the orogeny of central Taiwan[D]. Taipei:National Central University, 1-70(in Chinese). 梁明剑, 郭红梅, 李大虎, 等. 2013. 2013 年四川芦山 7.0 级地震发震构造机理及青衣江上游流域地貌的响应[J]. 地学前缘, 20(6):21-28. LIANG Ming-jian, GUO Hong-mei, LI Da-hu, et al. 2013. The seismogenic tectonic mechanism of the Lushan MS7.0 earthquake and the geomorphological response of the upstream drainage of Qingyijiang River, in 2013, Sichuan, China[J]. Earth Science Frontier, 20(6):21-28(in Chinese). 梁明剑, 周荣军, 闫亮, 等. 2014. 青海达日断裂中段构造活动与地貌发育的响应关系探讨[J]. 地震地质, 36(1):1-9. doi:10.3969/j.issn.0253-4967.2014.01. LIANG Ming-jian, ZHOU Rong-jun, YAN Liang, et al. 2014. The relationship between neotectonic activity of the middle segment of Dari Fault and its geomorphological response, Qinghai Province, China[J]. Seismology and Geology, 36(1):1-9(in Chinese). 刘静, 丁林, 曾令森, 等. 2006. 青藏高原典型地区的地貌量化分析:兼对高原"夷平面"的讨论[J]. 地学前缘, 13(5):285-295. LIU Jing, DING Ling, ZENG Ling-sen, et al. 2006. Large-scale terrain analysis of selected regions of the Tibetan plateau:Discussion on the origin of plateau planation surface[J]. Earth Science Frontiers, 13(5):285-299(in Chinese). 罗浩. 2010. 祁连山中西段昌马-大雪山区域活动断裂晚第四纪变形研究[D]. 兰州:中国地震局兰州地震研究所. 3-89. LUO Hao. 2010. Deformation study of Changma-Daxueshan Fault in western segment of Qilianshan since late Quaternary[D]. Lanzhou:Lanzhou Institute of Seismology, China Earthquake Administration. 3-89 (in Chinese). 罗浩, 何文贵, 王定伟, 等. 2013. 祁连山昌马断裂晚更新世滑动速率[J]. 地震地质, 35(4):765-774. doi:10.3969/j.issn.0253-4967.2013.04.007. LUO Hao, HE Wen-gui, WANG Ding-wei, et al. 2013. Study on the slip rate of Changma Fault in Qilian Mountains since Late Pleistocene[J]. Seismology and Geology, 35(4):765-774(in Chinese). 毛洪亮. 2008. 疏勒河冲积扇绿洲全新世古水文演化研究[D]. 北京:中国地质科学院, 1-60. MAO Hong-liang. 2008. Study on the paleohydrogeoloy evolution of the Shule River alluvial fan oasis in Holocene[D]. Chinese Academy of Geological Sciences, Beijing. 1-60(in Chinese). 潘保田, 高红山, 李炳元, 等. 2004. 青藏高原层状地貌与高原隆升[J]. 第四纪研究, 24(1):50-56. PAN Bao-tian, GAO Hong-shan, LI Bing-yuan, et al. 2004. Step-like landforms and uplift of the Qinghai-Xizang Plateau[J]. Quaternary Sciences, 24(1):50-56(in Chinese). 潘保田, 高红山, 李吉均. 2002. 关于夷平面的科学问题:兼论青藏高原夷平面[J]. 第四纪研究, 22(5):520-525. PAN Bao-tian, GAO Hong-shan, LI Ji-jun. 2002. On problems of planation surface-A discussion on the planation surface in Qinghai-Xizang Plateau[J]. Quaternary Sciences, 22(5):520-525(in Chinese). 邵延秀. 2010. 祁连山西段野马河-党河南山断裂晚第四纪活动特征[D]. 兰州:中国地震局兰州地震研究所, 3-71. SHAO Yan-xiu. 2010. The activity features during late Quaternary of Yema River-Danghe Nan Shan faults in western Qilian Shan[D]. Lanzhou Institute of Seismology, China Earthquake Administration. Lanzhou, 3-71 (in Chinese). 史兴民, 杜忠潮. 2006. 中国构造地貌学的回顾与展望[J]. 西北地震学报, 28(6):280-284. SHI Xing-min, DU Zhong-chao. 2006. Review and prospect of tectonic geomorphology in China[J]. Northwestern Seismological Journal, 28(6):280-284(in Chinese). 时振梁, 环文林, 姚国干, 等. 1974. 1932 年昌马地震地震破裂带及其形成原因的初步探讨[J]. 地球物理学报, 17(4):272-286. SHI Zhen-liang, HUAN Wen-lin, YAO Guo-gan, et al. 1974. On the fracture zones of Changma earthquake of 1932 and their causes[J]. Acta Geophysica Sinica, 17(4):272-286(in Chinese). 汤国安, 李发源, 刘学军. 2013. 数字高程模型教程[M]. 北京:科学出版社. 1-72. TANG Guo-an, LI Fa-yuan, LIU Xue-jun. 2013. Digital Elevation Model Tutorial[M]. Science Press, Beijing. 1-72(in Chinese). 王岸, 王国灿. 2005. 构造地貌及其分析方法述评[J]. 地质科技情报, 24(4):7-13. WANG An, WANG Guo-can. 2005. Review on morphotectonic and its analytical methods[J]. Geological Science and Technology Information, 24(4):7-13(in Chinese). 王一舟, 张会平, 俞晶星, 等. 2013. 祁连山洪水坝河流域地貌特征及其构造指示意义[J]. 第四纪研究, 33(4):737-742. WANG Yi-zhou, ZHANG Hui-ping, YU Jing-xing, et al. 2013. Geomorphic features of the Hongshuiba River drainage basin in Qilianshan Mountainas and its insight into tectonic implications[J]. Quaternary Sciences, 33(4):737-742(in Chinese). 徐岳仁, 何宏林, 邓起东, 等. 2013. 山西霍山山脉河流地貌定量参数及其构造意义[J]. 第四纪研究, 33(4):746-759. XU Yue-ren, HE Hong-lin, DENG Qi-dong, et al. 2013. Quantitative river geomorphic parameters surrounding Mts. Huoshan, Shanxi Province and their tectonic implications[J]. Quaternary Sciences, 33 (4):746-759 (in Chinese). 许志琴, 曾令森, 杨经绥, 等. 2004. 走滑断裂、" 挤压性盆-山构造" 与油气资源关系的探讨[J]. 地球科学:中国地质大学学报, 29(6):631-643. XU Zhi-qin, ZENG Ling-sen, YANG Jing-sui, et al. 2004. Role of large-scale strike-slip faults in the formation of petroleum-bearing compressional basin-mountain range system[J]. Earth Science:Journal of China University of Geosciences, 29(6):631-643(in Chinese). 闫冬冬, 吕胜华, 李有利, 等. 2011. 六棱山北麓中段冲沟地貌发育的定量研究及其新构造意义[J]. 地理科学, 31(2):244-250. YAN Dong-dong, LÁ Sheng-hua, LI You-li, et al. 2011. Geomorphic analysis and its implication to neotectonics in middle of northern front of Liulengshan Mountains, northern Shanxi[J]. Scientia Geographica Sinica, 31(2):244-250(in Chinese). 袁道阳. 2003. 青藏高原东北缘晚新生代以来的构造变形特征与时空演化[D]. 北京:中国地震局地质研究所. 6-145. YUAN Dao-yang. 2003. Tectonic deformation features and space-time evolution in northern margin of the Qinghai-Tibetan plateau since the late Cenozoic time[D]. Institute of Geology, China Earthquake Administration, Beijing. 6-145(in Chinese). 曾秋生. 1992. 东昆仑断裂带的古地震研究[J]. 高原地震, 4(2):10-18. ZENG Qiu-sheng. 1992. A study on palaeoearthquakes in eastern Kunlun fault zone[J]. Plateau Earthquake Research, 4(2):10-18(in Chinese). 张会平. 2006. 青藏高原东缘、东北缘典型地区晚新生代地貌过程研究[D]. 北京:中国地质大学, 1-71. ZHANG Hui-ping. 2006. Study on the Cenozoic geomorphic processes of typical regions along the eastern and northeastern Tibetan margins[D]. China University of Geosciences, Beijing, 1-71(in Chinese). 张会平, 扬农, 张岳桥, 等. 2006. 岷江水系流域地貌特征及其构造指示意义[J]. 第四纪研究, 26(1):126-133. ZHANG Hui-ping, YANG Nong, ZHANG Yue-qiao, et al. 2006. Geomorphology of the Minjiang drainage system(Sichuan, China) and its structural implications[J]. Quaternary Sciences, 26(1):126-135(in Chinese). 张会平, 张培震, 郑德文, 等. 2012. 祁连山构造地貌特征:青藏高原东北缘晚新生代构造变形和地貌演化过程的启示[J]. 第四纪研究, 32(5):907-917. ZHANG Hui-ping, ZHANG Pei-zhen, ZHENG De-wen, et al. 2012. Tectonic geomorphology of the Qilian Shan:Insights into the Late Cenozoic landscape evolution and deformation in the northeastern Tibetan plateau[J]. Quaternary Sciences, 32(5):907-917(in Chinese). 张鹏, 张钰, 罗颖, 等. 2013. 疏勒河出山口径流对上游气候变化的响应[J]. 水资源与水工程学报, 24(5):165-172. ZHANG Peng, ZHANG Yu, LUO Ying, et al. 2013. Response of runoff at mountainous area of Shule River to climate change of upstream[J]. Journal of Water Resources & Water Engineering, 24(5):165-172(in Chinese). 张韵娴. 2003. 台湾地区流域面积高程积分值之研究[D]. 高雄:国立高雄师范大学. 1-110. ZHANG Yun-xian. 2003. The hypsometric analysis of Taiwan and its tectonic implication[D]. National Kaohsiung Normal University, Kaohsiung. 1-110(in Chinese). 赵国华, 李勇, 闫照坤, 等. 2014. 龙门山中段山前河流 Hack 剖面和面积-高程积分的构造地貌研究[J]. 第四纪研究, 34(2):302-310. ZHAO Guo-hua, LI Yong, YAN Zhao-kun, et al. 2014. Tectonic geomorphology analysis of piedmont rivers of the middle Mt. Longmenshan Basin on Hack profile and hypsometric integral[J]. Quaternary Sciences, 34 (2):302-310(in Chinese). 赵洪壮, 李有利, 杨景春. 2010. 北天山流域河长坡降指标与 Hack 剖面的新构造意义[J]. 北京大学学报(自然科学版), 46(2):237-243. ZHAO Hong-zhuang, LI You-li, YANG Jing-chun. 2010. Implication of active structure along the northern Tianshan by stream length-gradient index and Hack profile[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(2):237-243(in Chinese). 赵洪壮, 李有利, 杨景春, 等. 2009. 天山北麓河流纵剖面与基岩侵蚀模型特征分析[J]. 地理学报, 64(5):563-570. ZHAO Hong-zhuang, LI You-li, YANG Jing-chun, et al. 2009. The longitudinal profiles of the ten rivers in north Tianshan Mountains and their tectonic significance[J]. Acta Geographica Sinica, 64 (5):563-570 (in Chinese). 赵 朋. 2009. 肃北地区主要断裂晚第四纪活动特征研究[D]. 北京:中国地震局地质研究所. 13-65. ZHAO Peng. 2009. Active characteristics study of major faults in the Subei region in the Late Quaternary[D]. Institute of Geology, China Earthquake Administration, Beijing. 13-65(in Chinese). 郑荣章. 2005. 阿尔金构造系晚更新世中晚期以来的构造隆升及其变形机制[D]. 北京:中国地震局地质研究所. 1-87. ZHENG Rong-zhang. 2005. Tectonic uplift and deformation mechanism of the Altun structural system since the middle-late period of late Pleistocene time[D]. Institute of Geology, China Earthquake Administration, Beijing. 1-87(in Chinese). 郑文俊. 2009. 河西走廊及其邻区活动构造图像及构造变形模式[D]. 北京:中国地震局地质研究所. 1-181. ZHENG Wen-jun. 2009. Geometric pattern and active tectonics of the Hexi Corridor and its adjacent regions[D]. Institute of Geology, China Earthquake Administration, Beijing. 1-181(in Chinese). Brookfield M E. 1998. The evolution of the great river system of southern Asia during the Cenozoic India-Asia collision:River draining southwards[J]. Geomorphology, 22:285-312. Burbank D W. 1992. Characteristic size of relief[J]. Nature, 359:483-484. Burbank D W, Printer N. 1999. Landscape evolution:The interactions of tectonics and surface processes[J]. Basin Research, 11:1-6. Burnett A W, Schumm S A. 1983. Alluvial-river response to neotectonic deformation in Louisiana and Mississippi[J]. Science, 222:49-50. Davis W M. 1899. The geographical circle[J]. J Geogr, 14:481-504. Hack J T. 1973. Stream-profile analysis and stream-gradient index[J]. Journal of Research of the US Geological Survey, 1:421-429. Harrison T M, Copeland P, Kidd W S F, et al. 1992. Raising Tibet[J]. Science, 255(5052):1663-1670. Huetrez J E, Sol C, Lucazeau F. 1999. Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik Hills(Central Nepal)[J]. Earth Surface Processes and Landforms, 24(9):799-808. Kirby E, Whipple K. 2001. Quantifying differential rock-uplift rates via stream profile analysis[J]. Geological Society of America, 29(5):415-418. Kirby E, Whipple K. 2003. Distribution of active rock uplift along the eastern margin of the Tibetan plateau:Inferences from bedrock channel longitudinal profiles[J]. Journal of Geophysical Research-Solid Earth, 108(B4):2217. Merritts D, Vincent K R. 1989. Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Mendocino triple junction region, northern California[J]. Bulletin of the Geological Society of America, 110(11):1373-1388. Molnar P, England P. 1990. Late Cenozoic uplift of mountain ranges and global climate change:Chicken and eggs?[J]. Nature, 346(6279):29-34. Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision[J]. Science, 189(4201):419-426. Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibet plateau, and the Indian monsoon[J]. Reviews of Geophysics, 31:357-396. Ouchi S. 1985. Response of alluvial rivers to slow active tectonic movement[J]. Geological Society of America Bulletin, 96:504-515. Pike R J, Wilson S E. 1971. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis[J]. Geological Society of America Bulletin, 82:1079-1084. Radoane M, Radoane N, Dumitriu D. 2003. Geomorphological evolution of longitudinal river profiles in the Carpathians[J]. Geomorphology, 50(4):293-306. Seeber L, Gornitz V. 1982. River profile along the Himalayan arc as indicator of active tectonics[J]. Geomorphology, 92(4):335-367. Snow R S, Slingerland R L. 1990. Stream profile adjustment to crustal warping:Nonlinear results from a simple model[J]. Journal of Geology, 98(5):699-708. Strahler A N. 1952. Hypsometric(area-altitude) analysis of erosional topography[J]. Geological Society of America Bulletin, 63:1117-1142. Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion in Asia:New insights from experiments with plasticine[J]. Geology, 10(12):611-616. Willgoose G A. 1994. Physical explanation for an observed area-slope-elevation relationship for catchments with declining relief[J]. Water Resources Research, 30(2):151-159. Zhang H P, Zhang P Z, Zheng D W, et al. 2014. Transforming the Miocene Altyn Tagh Fault slip into shortening of the northwestern Qilian Shan:Insights from the drainage basin geometry[J]. Terra Nova, 26(3):216-221. Zhang P Z, Molnar P, Downs W R. 2001. Increased sedimentation rates and grain sizes 2-4Myr ago due to the influence of climate change on erosion rates[J]. Nature, 410:892-897. Zhang P Z, Molnar P, Xu X W. 2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan plateau[J]. Tectonics, 26:TC5010. doi:10.1029/2006TC002014. |
[1] | 张玲, 苗树清, 杨晓平. 基于ArcGIS平台的天山北麓活动逆断层智能化提取方法的研究与实现[J]. 地震地质, 2023, 45(2): 422-434. |
[2] | 徐伟, 刘志成, 王继, 高战武, 尹金辉. 西藏阿里地区喀喇昆仑断裂断错地貌及最近强震活动时代的初步研究[J]. 地震地质, 2022, 44(4): 925-943. |
[3] | 卢本添, 李志刚, 梁浩, 杨敬钧, 郑文俊. 中条山北麓河流地貌特征及其对断裂构造演化的响应[J]. 地震地质, 2022, 44(4): 961-975. |
[4] | 叶雨晖, 吴磊, 王依平, 楼谦谦, 陈力琦, 高石宝, 林秀斌, 程晓敢, 陈汉林. 北阿尔金断裂晚第四纪活动构造特征[J]. 地震地质, 2022, 44(2): 297-312. |
[5] | 陈晓利, 刘春国, 传一健, 兰剑, 魏延坤. 鲁甸地震的滑坡物质运移规律与地形特征[J]. 地震地质, 2021, 43(1): 92-104. |
[6] | 周朝, 何宏林, 魏占玉, 苏鹏, 任光雪. 地貌参数方法在小尺度地貌研究中的应用——以北天山独山子背斜为例[J]. 地震地质, 2020, 42(6): 1492-1508. |
[7] | 唐清, 郑文俊, 石霖, 张冬丽, 黄荣. 基于高精度LiDAR数据的断裂活动习性精细定量——以香山-天景山断裂景泰小红山段为例[J]. 地震地质, 2020, 42(2): 366-381. |
[8] | 苏强, 任俊杰, 梁欧博, 郭菲. 基于ALOS PALSAR影像的莫勒切河洪积扇地貌面定量分期[J]. 地震地质, 2020, 42(1): 79-94. |
[9] | 魏聪敏, 葛伟鹏, 张波. 利用地貌形态估算西秦岭-松潘构造结及邻区的下地壳黏滞系数[J]. 地震地质, 2020, 42(1): 163-181. |
[10] | 孙稳, 何宏林, 魏占玉, 高伟, 孙浩越, 邹俊杰. 基于无人机航测获取高分辨率DEM数据的断层几何结构精细解译与分析——以海原断裂唐家坡为例[J]. 地震地质, 2019, 41(6): 1350-1365. |
[11] | 刘睿, 姜大伟, 李安, 郭长辉, 张世民. 利用沉积物粒度特征区分不同级地貌面的方法对比——以青衣江流域地貌面为例[J]. 地震地质, 2019, 41(4): 837-855. |
[12] | 任光雪, 李传友, 吴传勇, 汪思妤, 张会平, 任治坤, 李新男. 东天山包尔图断裂带晚第四纪运动性质及形成机制[J]. 地震地质, 2019, 41(4): 856-871. |
[13] | 许斌斌, 张冬丽, 张培震, 郑文俊, 毕海芸, 田晴映, 张逸鹏, 熊建国, 李志刚. 冲积扇河流阶地演化对走滑断裂断错位移的限定[J]. 地震地质, 2019, 41(3): 587-602. |
[14] | 韩龙飞, 刘静, 袁兆德, 邵延秀, 王伟, 姚文倩, 王鹏, 梁欧博, 徐心悦. 基于高分辨率地形数据的冲洪积扇特征提取与演化模式讨论——以海原断裂带老虎山地区冲洪积扇为例[J]. 地震地质, 2019, 41(2): 251-265. |
[15] | 吴贵灵, 祝成宇, 王国灿, 张攀. 青藏高原东南缘地貌边界性质的界定及其对高原东南缘扩展模式的启示[J]. 地震地质, 2019, 41(2): 281-299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||