韩亮, 周永胜, 姚文明. 2013. 中地壳断层带内微裂隙愈合与高压流体形成条件的模拟实验研究[J]. 地球物理学报, 56(1):91-105.
HAN Liang, ZHOU Yong-sheng, YAO Wen-ming. 2013. A simulating experimental study on crack healing and the formation of high pore fluid pressure in faults of middle crust[J].Chinese Journal of Geophysics, 56(1):91-105(in Chinese).
焦裕, 周永胜, 张雷, 等. 2019. 流体对石灰岩断层摩擦滑动影响的实验研究[J]. 地球物理学报, 62(1):159-171. doi:10.6038/cjg2019l0316.
JIAO Yu, ZHOU Yong-sheng, ZHANG Lei, et al. 2019. Experimental study on the effect of fluid to friction sliding of limestone fault gouge[J]. Chinese Journal of Geophysics, 62(1):159-171(in Chinese).
Blanpied M L, Marone C J, Lockner D A, et al. 1998. Quantitative measure of the variation in fault rheology due to fluid-rock interactions[J]. Journal of Geophysical Research:Solid Earth, 103(B5):9691-9712.
Bos B, Spiers C J. 2000. Effect of phyllosilicates on fluid-assisted healing of gouge-bearing faults[J]. Earth and Planetary Science Letters, 184(1):199-210. doi:10.1016/S0012-821X(00)00304-6.
Bos B, Spiers C J. 2002. Frictional-viscous flow of phyllosilicate-bearing fault rock:Microphysical model and implications for crustal strength profiles[J]. Journal of Geophysical Research:Solid Earth, 107(B2):2028. doi:10.1029/2001JB000301.
Brantut N, Heap M J, Baud P, et al. 2012. Micromechanics of brittle creep in rocks[J]. Journal of Geophysical Research:Solid Earth, 117(B8):B08412.
Brantut N, Heap M, Meredith P, et al. 2013. Time-dependent cracking and brittle creep in crustal rocks:A review[J]. Journal of Structural Geology, 52:17-43. doi:10.1016/j.jsg.2013.03.007.
Çakir Z, Akoglu A, Belabbes S, et al. 2005. Creeping along the Ismetpasa section of the North Anatolian Fault(western Turkey):Rate and extent from InSAR[J]. Earth and Planetary Science Letters, 238(1-2):225-234. doi:10.1016/j.epsl. 2005.06.044.
Carpenter B M, Ikari M J, Marone C. 2016. Laboratory observations of time-dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges[J]. Journal of Geophysical Research:Solid Earth, 121(2):11831201. doi:10.1002/2015JB012136.
Carpenter B M, Marone C, Saffer D M. 2011. Weakness of the San Andreas Fault revealed by samples from the active fault zone[J]. Nature Geoscience, 4(4):251-254. doi:10.1038/ngeo1089.
Cavalié O, Lasserre C, Doin M P, et al. 2008. Measurement of interseismic strain across the Haiyuan Fault(Gansu, China), by InSAR[J]. Earth and Planetary Science Letters, 275(3-4):246-257. doi:10.1016/j.epsl.2008.07.057.
Cetin E, Çakir Z, Meghraoui M, et al. 2014. Extent and distribution of aseismic slip on the Ismetpasa segment of the North Anatolian Fault(Turkey)from Persistent Scatterer InSAR[J]. Geochemistry, Geophysics, Geosystems, 15(7):2883-2894. doi:10.1002/2014GC005307.
Chen T, Liu-Zeng J, Shao Y X, et al. 2018. Geomorphic offsets along the creeping Laohu Shan section of the Haiyuan Fault, northern Tibetan plateau[J]. Geosphere, 14(3):1-22. https://doi.org/10.1130/GES01561.1.
de Michele M, Raucoules D, Rolandone F, et al. 2011. Spatiotemporal evolution of surface creep in the Parkfield region of the San Andreas Fault(1993-2004)from synthetic aperture radar[J]. Earth and Planetary Science Letters, 308(1-2):141-150. doi:10.1016/j.epsl.2011.05.049.
Gratier J P, Richard J, Renard F, et al. 2011. Aseismic sliding of active faults by pressure solution creep:Evidence from the San Andreas Fault observatory at depth[J]. Geology, 39(12):1131-1134. doi:10.1130/G32073.1.
Gratier J P, Thouvenot F, Jenatton L, et al. 2013. Geological control of the partitioning between seismic and aseismic sliding behaviors in active faults:Evidence from the western Alps, France[J]. Tectonophysics, 600:226-242. doi:10.1016/j.tecto.2013.02.013.
He C R, Luo L, Hao Q M, et al. 2013. Velocity-weakening behavior of plagioclase and pyroxene gouges and stabilizing effect of small amounts of quartz under hydrothermal conditions[J]. Journal of Geophysical Research:Solid Earth, 118(7):3408-3430.
He C R, Tan W B, Zhang L. 2016. Comparing dry and wet friction of plagioclase:Implication to the mechanism of frictional evolution effect at hydrothermal conditions[J]. Journal of Geophysical Research:Solid Earth, 121:6365-6383.
He C R, Wang Z L, Yao W M. 2007. Frictional sliding of gabbro gouge under hydrothermal conditions[J]. Tectonophysics, 445(3-4):353-362.
He C R, Yao W M, Wang Z L, et al. 2006. Strength and stability of frictional sliding of gabbro gouge at elevated temperatures[J]. Tectonophysics, 427(1-4):217-229.
Hearn E H, McClusky S, Ergintav S, et al. 2009. Izmit earthquake postseismic deformation and dynamics of the North Anatolian fault zone[J]. Journal of Geophysical Research:Solid Earth, 114(B8):B08405. doi:10.1029/2008JB006026.
Hussain E, Hooper A, Wright T J, et al. 2016a. Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped InSAR measurements[J]. Journal of Geophysical Research:Solid Earth, 121(12):9000-9019. doi:10.1002/2016JB013108.
Hussain E, Wright T J, Walters R J, et al. 2016b. Geodetic observations of postseismic creep in the decade after the 1999 Izmit earthquake, Turkey:Implications for a shallow slip deficit[J]. Journal of Geophysical Research:Solid Earth, 121(4):2980-3001. doi:10.1002/2015JB012737.
Janssen C, Kanitpanyacharoen W, Wenk H R, et al. 2012. Clay fabrics in SAFOD core samples[J]. Journal of Structural Geology, 43:118-127.
Janssen C, Wirth R, Wenk H R, et al. 2014. Faulting processes in active faults:Evidences from TCDP and SAFOD drill core samples[J]. Journal of Structural Geology, 65:100-116.
Jolivet R, Candela T, Lasserre C, et al. 2015. The burst-like behavior of aseismic slip on a rough fault:The creeping section of the Haiyuan Fault, China[J]. Bulletin of the Seismological Society of America, 105(1):480-488. doi:10.1785/0120140237.
Jolivet R, Lasserre C, Doin M P, et al. 2012. Shallow creep on the Haiyuan Fault(Gansu, China)revealed by SAR Interferometry[J]. Journal of Geophysical Research:Solid Earth, 117(B6):B06401. doi:10.1029/2011JB008732.
Jolivet R, Lasserre C, Doin M P, et al. 2013. Spatio-temporal evolution of aseismic slip along the Haiyuan Fault, China:Implications for fault frictional properties[J]. Earth and Planetary Science Letters, 377-378:23-33.
Kaduri M, Gratier J P, Renard F, et al. 2017. The implications of fault zone transformation on aseismic creep:Example of the North Anatolian Fault, Turkey[J]. Journal of Geophysical Research:Solid Earth, 122(6). doi:10.1002/2016JB013803.
Kaneko Y, Fialko Y, Sandwell D T, et al. 2013. Interseismic deformation and creep along the central section of the North Anatolian Fault(Turkey):InSAR observations and implications for rate-and-state friction properties[J]. Journal of Geophysical Research:Solid Earth, 118(1):316-331. doi:10.1029/2012JB009661.
Lienkaemper J J, Borchardt G, Lisowski M. 1991. Historic creep rate and potential for seismic slip along the Hayward Fault, California[J]. Journal of Geophysical Research:Solid Earth, 96(B11):18261-18283.
Lockner D A, Morrow C, Moore D, et al. 2011. Low strength of deep San Andreas Fault gouge from SAFOD core[J]. Nature, 472(7341):82-85. doi:10.1038/nature09927.
Lu Z, He C R. 2014. Frictional behavior of simulated biotite fault gouge under hydrothermal conditions[J]. Tectonophysics, 622:62-80.
Lu Z, He C R. 2018. Friction of foliated fault gouge with a biotite interlayer at hydrothermal Conditions[J]. Tectonophysics, 740-741:72-92.
Marone C. 1998. Laboratory-derived friction laws and their application to seismic faulting[J]. Annual Review of Earth and Planetary Sciences, 26(1):643-696. doi:10.1146/annurev.earth.26.1.643.
Moore D E, Rymer M J. 2007. Talc-bearing serpentinite and the creeping section of the San Andreas Fault[J]. Nature, 448(7155):795-797. doi:10.1038/nature06064.
Ryder I, Bürgmann R. 2008. Spatial variations in slip deficit on the central San Andreas Fault from InSAR[J]. Geophysical Journal International, 175(3):837-852. doi:10.1111/j.1365-246X. 2008.039 38.x.
Scuderi M M, Collettini C, Viti E, et al. 2017. Evolution of shear fabric in granular fault gouge from stable sliding to stick slip and implications for fault slip mode[J]. Geology, 45(8):G39033.1. doi:10.1130/G39033.1.
Verberne B A, He C R, Spiers C J. 2010. Frictional properties of sedimentary rocks and natural fault gouge from the Longmen Shan fault zone, Sichuan, China[J]. Bulletin ofthe Seismological Society of America, 100(5B):2767-2790.
Zhang J, Wen X Z, Cao J L, et al. 2018. Surface creep and slip-behavior segmentation along the northwestern Xianshuihe fault zone southwestern China determined from decades of fault-crossing short-baseline and short-level surveys[J]. Tectonophysics, 722:356-372.
Zhang L, He C R. 2013. Frictional properties of natural gouges from Longmenshan fault zone ruptured during the Wenchuan MW7.9 earthquake[J]. Tectonophysics, 594:149-164.
Zhang L, He C R. 2016. Frictional properties of phyllosilicate-rich myloniteand conditions for the brittle-ductile transition[J]. Journal of Geophysical Research:Solid Earth, 121(4):3017-3047. doi:10.1002/2015JB012489. |