地震地质 ›› 2019, Vol. 41 ›› Issue (2): 499-520.DOI: 10.3969/j.issn.0253-4967.2019.02.015
林旭1,2, 刘静2
收稿日期:
2018-12-05
修回日期:
2019-01-23
出版日期:
2019-04-20
发布日期:
2019-05-21
作者简介:
林旭,男,1984年生,2016年于中国科学院地质与地球物理研究所获第四纪地质学专业博士学位,副教授,主要从事新生代构造、大河演化研究,电话:13325135055,E-mail:hanwuji-life@163.com。
基金资助:
LIN Xu1,2, ZENG Jing2
Received:
2018-12-05
Revised:
2019-01-23
Online:
2019-04-20
Published:
2019-05-21
摘要: 沉积盆地与造山带是大陆构造的2个重要的组成单元,具内在成因联系。对其耦合关系进行研究,可以恢复和重建岩石圈深部运动过程,了解近地表构造与气候之间的相互作用。江汉和洞庭盆地位于长江中游,与周缘造山带具有清晰的盆山边界,盆内河流水系十分发育,是一个多物源沉积盆地,是探讨从山(源)到盆(汇)沉积过程的天然实验室。文中对江汉盆地盆山耦合的研究结果进行了总结和梳理,介绍了造山带基岩、盆地和河流沉积物低温热年代学的应用方法,提出了新的研究切入点,建议今后在江汉和洞庭盆地开展盆山耦合研究时,将造山带基岩和河流碎屑矿物低温热年代学结果相结合,同时开展同一目标矿物的物源示踪研究,综合分析造山带隆升信息与物源信息,并与周缘构造和沉积学研究结果相互检验,可得到详细的盆山耦合演化过程。
中图分类号:
林旭, 刘静. 江汉和洞庭盆地与周缘造山带盆山耦合研究进展[J]. 地震地质, 2019, 41(2): 499-520.
LIN Xu, ZENG Jing. A REVIEW OF MOUNTAIN-BASIN COUPLING OF JIANGHAN AND DONGTING BASINS WITH THEIR SURROUNDING MOUNTAINS[J]. SEISMOLOGY AND GEOLOGY, 2019, 41(2): 499-520.
柏道远, 黄建中, 孟德保, 等. 2006. 湘东南地区中、新生代山体隆升过程的热年代学研究[J]. 地球学报, 27(6):525-536. BAI Dao-yuan, HUANG Jian-zhong, MENG De-bao, et al. 2006. Meso-Cenozoic thermochronological analysis of the uplift process of mountains in southeast Hunan[J]. Acta Geoscientica Sinica, 27(6):525-536(in Chinese). 柏道远, 李长安, 陈渡平, 等. 2010. 洞庭盆地两护村孔重矿物特征及其对第四纪构造活动与环境演变的响应[J]. 地质论评, 56(2):246-260. BAI Dao-yuan, LI Chang-an, CHEN Du-ping, et al. 2010. Heavy minerals characteristics of sediments in Lianghucun borehole and their responses to the Quaternary tectonic movement and environmental evolutions of the Dongting Basin[J]. Geological Review, 56(2):246-260(in Chinese). 戴世昭. 1997. 江汉盐湖盆地石油地质[M]. 北京:石油工业出版社:1-223. DAI Shi-zhao. 1997. Petroleum Geology of Jianghan Salt-lake Basin[M]. Petroleum Industry Press, Beijing:1-223(in Chinese). 范代读, 王扬扬, 吴伊婧. 2012. 长江沉积物源示踪研究进展[J]. 地球科学进展, 27(5):515-528. FAN Dai-du, WANG Yang-yang, WU Yi-jing. 2012. Advances in provenance studies of Changjiang River sediments[J]. Advance in Earth Science, 27(5):515-528(in Chinese). 胡庆, 董文钦, 余松, 等. 2017. 汉江郧阳段河流阶地发育特征及新构造运动意义[J]. 大地测量与地球动力学, 37(2):127-131. HU Qing, DONG Wen-qin, YU Song, et al. 2017. The characteristics and the neotectonic implication of the Hanjiang River terraces in Yunyang Part[J]. Journal of Geodesy and Geodynamics, 37(2):127-131(in Chinese). 康春国, 李长安, 王节涛, 等. 2009. 江汉平原沉积物重矿物特征及其对三峡贯通的指示[J]. 地球科学, 34(3):419-427. KANG Chun-guo, LI Chang-an, WANG Jie-tao, et al. 2009. Heavy minerals characteristics of sediments in Jianghan Plain and its indication to the forming of the Three Gorges[J]. Earth Science, 34(3):419-427(in Chinese). 康春国, 李长安, 张玉芬, 等. 2014. 宜昌砾石层重矿物组合特征及物源示踪分析[J]. 地质学报, 88(2):254-262. KANG Chun-guo, LI Chang-an, ZHANG Yu-fen, et al. 2014. Heavy mineral characteristics of the Yichang gravel layers and provenance tracing[J]. Acta Geologica Sinica, 88(2):254-262(in Chinese). 湖北省地质矿产局. 1990. 湖北省区域地质志[M]. 北京:地质出版社:1-705. Bureau of Geology and Mineral Resources of Hubei Province. 1990. Regional Geology of Hubei Province[M]. Geological Publishing House, Beijing:1-705(in Chinese). 李长安, 殷鸿福, 俞立中, 等. 2000. 流域环境系统演化概念模型:山-河-湖-海互动及对全球变化的敏感响应:以长江为例[J]. 长江流域资源与环境, 9(3):358-363. LI Chang-an, YIN Hong-fu, YU Li-zhong, et al. 2000. Concept model on the fluvial environmental system:Mountain-river-lake-sea interaction and sensitive responding to global change[J]. Resources and Environment in the Yangtze Basin, 9(3):358-363(in Chinese). 李超, 王岳军, 范蔚茗, 等. 2006. 江汉盆地东部早中生代沉积地层碎屑云母成分:对大别高压-超高压岩石暴露作用的约束[J]. 大地构造与成矿学, 30(3):392-400. LI Chao, WANG Yue-jun, FAN Wei-ming, et al. 2006. Compositions of detrital white mica grains from early Mesozoic sedimentary rocks in the eastern Jianghan Basin:Constraints on the exhumation of the HP-UHP rocks in Dabie Orogen[J]. Geotectonica et Metallogenia, 30(3):392-400(in Chinese). 李忠, 李任伟, 孙枢, 等. 2002. 大别山南麓中生代盆地充填记录对造山作用属性的反映[J]. 中国科学(D辑), 32(6):469-478. LI Zhong, LI Ren-wei, SUN Shu, et al. 2002. Mesozoic basin-fill records in south foot of the Dabie Mountains:Implication for Dabie orogenic attributes[J]. Science in China(Ser D), 32(6):469-478(in Chinese). 林旭, 刘静, 彭保发, 等. 2017a. 青藏高原周围河流基岩和碎屑矿物低温热年代学研究进展[J]. 地震地质, 39(6):1091-1110. doi:10.3969/j.issn.0253-4967.2017.06.001. LIN Xu, LIU-ZENG Jing, PENG Bao-fa. et al. 2017a. A review of low-temperature thermochronology on bedrock and detritus from rivers around the Tibetan Plateau[J]. Seismology and Geology, 39(6):1091-1110(in Chinese). 林旭, 孙继敏, 赵希涛. 2017b. 磷灰石裂变径迹年龄 "拐点"的地质意义[J]. 第四纪研究, 37(3):570-580. LIN Xu, SUN Ji-min, ZHAO Xi-tao. 2017b. The geological meaning of the breaking point from the apatite fission track dating age[J]. Quaternary Sciences, 37(3):570-580(in Chinese). 刘静, 张金玉, 葛玉魁, 等. 2018. 构造地貌学:构造-气候-地表过程相互作用的交叉研究[J]. 科学通报, 63(30):3070-3088. LIU-ZENG Jing, ZHANG Jin-yu, GE Yu-kui, et al. 2018. Tectonic geomorphology:An interdisciplinary study of the interaction among tectonic climatic and surface processes[J]. Chinese Science Bulletin, 63(30):3070-3088(in Chinese). 刘树根, 罗志立, 赵锡奎, 等. 2003. 中国西部盆山系统的耦合关系及其动力学模式:以龙门山造山带-川西前陆盆地系统为例[J]. 地质学报, 77(2):177-186. LIU Shu-gen, LUO Zhi-li, ZHAO Xi-kui, et al. 2003. Coupling relationships of sedimentary basin-orogenic belt systems and their dynamic models in West China:A case study of the Longmenshan orogenic belt-West Sichuan foreland basin system[J]. Acta Geologica Sinica, 77(2):177-186(in Chinese). 梅廉夫, 刘昭茜, 汤济广, 等. 2010. 湘鄂西-川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据[J]. 地球科学, 35(2):161-174. MEI Lian-fu, LIU Zhao-qian, TANG Ji-guang, et al. 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan Provinces of China:Evidence from apatite fission track and balanced cross-section[J]. Earth Science, 35(2):161-174(in Chinese). 彭和求, 贾宝华, 唐晓珊. 2004. 湘东北望湘岩体的热年代学与幕阜山隆升[J]. 地质科技情报, 23(1):11-15. PENG He-qiu, JIA Bao-hua, TANG Xiao-shan. 2004. Uplift process of Mufushan and thermochronology of Wangxiang granites in northeastern Hunan Province[J]. Geological Science and Technology Information, 23(1):11-15(in Chinese). 渠洪杰, 康艳丽, 崔建军. 2014. 扬子北缘黄陵地区晚中生代盆地演化及其构造意义[J]. 地质科学, 49(4):1070-1092. QU Hong-jie, KANG Yan-li, CUI Jian-jun. 2014. Late Mesozoic sedimentary basin evolution and tectonic implication in Huangling area, northern of Yangtze block[J]. Chinese Journal of Geology, 49(4):1070-1092(in Chinese). 任美锷, 杨戍. 1957. 湘江流域的某些地貌和第四纪地质问题[J]. 地理学报, 23(4):359-377. REN Mei-e, YANG Shu. 1957. Some problems on the geomorphology and Quaternary geology of the Hsiang Kiang Basin, Hunan Province[J]. Acta Geographica Sinica, 23(4):359-377(in Chinese). 沈玉昌. 1956. 汉水河谷的地貌及其发育史[J]. 地理学报, 22(4):296-323. SHEN Yu-chang. 1956. Geomorphology of the Hanshui Valley[J]. Acta Geographica Sinica, 22(4):296-323(in Chinese). 沈玉昌. 1965. 长江上游河谷地貌[M]. 北京:科学出版社:1-181. SHEN Yu-chang. 1965. Topography of the Upper Yangtze River Valley[M]. Science Press, Beijing:1-181(in Chinese). 孙继敏, 2014. 地球系统科学的研究范例:青藏高原隆升的地貌、环境、气候效应[J]. 中山大学学报(自然科学版), 53(6):1-9. SUN Ji-min. 2014. Case study based on earth system science theory:Geomorphic, environmental, and climatic effects of the tectonic uplift of the Tibetan Plateau[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 53(6):1-9(in Chinese). 汪品先. 2005. 新生代亚洲形变与海陆相互作用[J]. 地球科学, 30(1):1-18. WANG Pin-xian. 2005. Cenozoic deformation and history of sea-land interaction in Asia[J]. Earth Science, 30(1):1-18(in Chinese). 王国灿. 2002. 沉积物源区剥露历史分析的一种新途径:碎屑锆石和磷灰石裂变径迹热年代学[J]. 地质科技情报, 21(4):35-40. WANG Guo-can. 2002. A new approach to determine the exhumation history of the sediment provenance:Detrital zircon and apatite fission-track thermochronology[J]. Geological Science and Technology Information, 21(4):35-40(in Chinese). 王明明. 2013. 汉中盆地发育机制及其构造演化研究[D]. 中国地震局地质研究所, 北京:1-147. WANG Ming-ming. 2013. A study on developmental mechanism and tectonic evolution of the Hanzhong Basin[D]. Institute of Geology, China Earthquake Administration, Beijing:1-147(in Chinese). 王修喜. 2017. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 32(3):234-244. WANG Xiu-xi. 2017. Applications of low temperature thermochronology in the tectonogeomorphology evolution of the Tibetan Plateau[J]. Advances in Earth Science, 32(3):234-244(in Chinese). 吴中海, 吴珍汉, 万景林, 等. 2003. 华山新生代隆升-剥蚀历史的裂变径迹热年代学分析[J]. 地质科技情报, 22(3):27-32. WU Zhong-hai, WU Zhen-han, WAN Jing-lin, et al. 2003. Cenozoic uplift and denudation history of Huashan Mountains:Evidence from fission track thermochronology of Huashan Granite[J]. Geological Science and Technology Information, 22(3):27-32(in Chinese). 向芳, 杨栋, 田馨, 等. 2011. 湖北宜昌地区第四纪沉积物中锆石的U-Pb年龄特征及其物源意义[J]. 矿物岩石, 31(2):106-114. XIANG Fang, YANG Dong, Tian Xin, et al. 2011. LA-ICP-MS U-Pb geochronology of zircons in the Quaternary sediments from the Yichang area of Hubei Province and its provenance significance[J]. Journal of Mineralogy and Petrology, 31(2):106-114(in Chinese). 向芳, 朱利东, 王成善, 等. 2006. 宜昌地区第四纪沉积物中玄武岩砾石特征及其与长江三峡贯通的关系[J]. 地球科学与环境学报, 28(2):6-10. XIANG Fang, ZHU Li-dong, WANG Cheng-shan, et al. 2006. Character of basaltic gravels in Quaternary sediments in Yichang area and its relationship with formation of Yangtze Three Gorges[J]. Journal of Earth Sciences and Environment, 28(2):6-10(in Chinese). 颜茂都, 陈毅. 2018. 晚始新世古红河流域变化:来自思茅盆地早新生代地层碎屑锆石 U-Pb 年代学证据[J]. 第四纪研究, 38(1):130-144. YAN Mao-du, CHEN Yi. 2018. Detrital zircon U-Pb age analyses of the early Cenozoic sediments from the Simao Basin and evolution of the paleo-Red River drainage system[J]. Quaternary Sciences, 38(1):130-144(in Chinese). 杨达源. 1988. 长江三峡的起源与演变[J]. 南京大学学报(自然科学版), 24(3):466-474. YANG Da-yuan. 1988. The origin and evolution of the Three Gorges of the Yangtze River[J]. Journal of Nanjing University(Natural Sciences Edition), 24(3):466-474(in Chinese). 杨达源. 2006. 长江地貌过程[M]. 地质出版社, 北京:1-219. YANG Da-yuan. 2006. Changjiang Geomorphologic Process[M]. Geological Publishing House, Beijing:1-219(in Chinese). 杨守业. 2006. 亚洲主要河流的沉积地球化学示踪研究进展[J]. 地球科学进展, 21(6):648-655. YANG Shou-ye. 2006. Advances in sedimentary geochemistry and tracing applications of Asian rivers[J]. Advances in Earth Science, 21(6):648-655(in Chinese). 袁胜元, 李长安, 张玉芬, 等, 2012. 江汉盆地沉积物微量元素特征与长江上游水系拓展[J]. 中国地质, 39(4):1042-1048. YUAN Sheng-yuan, LI Chang-an, ZHANG Yu-fen, et al. 2012. Trace element characteristics of sediments in Jianghan Basin:Implications for expansion of the upper reaches of the Yangtze River[J]. Geology in China, 39(4):1042-1048(in Chinese). 赵举兴, 李长安, 许应石. 2014. 洞庭盆地古沅江砾石层的沉积特征及沉积环境[J]. 地质科技情报, 33(1):85-89. ZHAO Ju-xing, LI Chang-an, XU Ying-shi. 2014. Sedimentary characteristics and sedimentary environment of the gravel bed within Paleo-Yuanjiang River from Dongting Basin[J]. Geological Science and Technology Information, 33(1):85-89(in Chinese). 赵希涛, 张永双, 胡道功, 等. 2006. 云南丽江地区大具盆地早更新世金沙江砾石层的发现及其意义[J]. 地质通报, 25(12):1381-1386. ZHAO Xi-tao, ZHANG Yong-shuang, HU Dao-gong, et al. 2006. The discovery of early Pleistocene gravels of the Jinsha River in the Daju Basin, Yunnan, China, and its significance[J]. Geological Bulletin of China, 25(12):1381-1386(in Chinese). 郑德文, 张培震, 万景林, 等. 2000. 碎屑颗粒热年代学:一种揭示盆山耦合过程的年代学方法[J]. 地震地质, 22(4):427-435. ZHENG De-wen, ZHANG Pei-zhen, WAN Jing-lin, et al. 2000. Detrital grain thermochronology:A potential method for research on coupling process between basin and mountain[J]. Seismology and Geology, 22(4):427-435(in Chinese). 周祖翼. 2014. 低温热年代学:原理与应用[M]. 北京:科学出版社:1-230. ZHOU Zu-yi. 2014. Low Temperature Thermochronology:Principles and Applications[M]. Science Press, Beijing:1-230(in Chinese). Bernet M, Garver J I. 2005. Fission-track analysis of detrital zircon[J]. Reviews in Mineralogy and Geochemistry, 58(1):205-237. Clark M K, Bush J W, Royden L H. 2005. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau[J]. Geophysical Journal International, 162(2):575-590. Clark M K, Schoenbohm L M, Royden L H, et al. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics, 23(1):1-20. Clift P D, Carter A, Campbell I H, et al. 2006. Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam:Provenance and exhumation implications for Southeast Asia[J]. Geochemistry, Geophysics, Geosystems, 7(10):1-28. Clift P D, Long H V, Hinton R, et al. 2008. Evolving East Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments[J]. Geochemistry, Geophysics, Geosystems, 9(4):1-20. Danišík M. 2018. Integration of fission-track thermochronology with other geochronologic methods on single crystals[M]. Malusà M G, et al.(eds). Fission-Track Thermochronology and Its Application to Geology. Springer, Cham:93-108. Danišík M, Pfaff K, Evans N J, et al. 2010. Tectonothermal history of the Schwarzwald Ore District(Germany):An apatite triple dating approach[J]. Chemical Geology, 278(1-2):58-69. Deng B, Chew D, Jiang L, et al. 2018a. Heavy mineral analysis and detrital U-Pb ages of the intracontinental Paleo-Yangzte Basin:Implications for a transcontinental source-to-sink system during Late Cretaceous time[J]. Geological society of America Bulletin, 130(11-12):2087-2109. Donelick R A, O'Sullivan P B, Ketcham R A. 2005. Apatite fission-track analysis[J]. Reviews in Mineralogy and Geochemistry, 58(1):49-94. Duvall A R, Clark M K, Avdeev B, et al. 2012. Widespread late Cenozoic increase in erosion rates across the interior of eastern Tibet constrained by detrital low-temperature thermochronometry[J]. Tectonics, 31(3):1-23. Enkelmann E, Ratschbacher L, Jonckheere R, et al. 2006. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling:Is Tibetan lower crustal flow diverging around the Sichuan Basin?[J]. Geological Society of America Bulletin, 118(5-6):651-671. Foster G L, Carter A. 2007. Insights into the patterns and locations of erosion in the Himalaya:A combined fission-track and in situ Sm-Nd isotopic study of detrital apatite[J]. Earth and Planetary Science Letters, 257(3-4):407-418. Grimmer J C, Jonckheere R, Enkelmann E, et al. 2002. Cretaceous-Cenozoic history of the southern Tan-Lu fault zone:Apatite fission-track and structural constraints from the Dabie Shan(eastern China)[J]. Tectonophysics, 359(3):225-253. Horton B K, Yin A, Spurlin M S, et al. 2002. Paleocene-Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet[J]. Geological Society of America Bulletin, 114(7):771-786. Hu S, Kohn B P, Raza A, et al. 2006a. Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai-Dabie belt, central China, from apatite fission-track thermochronology[J]. Tectonophysics, 420(3-4):409-429. Hu S, Raza A, Min K, et al. 2006b. Late Mesozoic and Cenozoic thermotectonic evolution along a transect from the North China craton through the Qinling orogen into the Yangtze craton, central China[J]. Tectonics, 25(6):1-15. Kong P, Granger D E, Wu F Y, et al. 2009. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake:Implications for evolution of the Middle Yangtze River[J]. Earth and Planetary Science Letters, 278(1-2):131-141. Li J, Xie S, Kuang M. 2001. Geomorphic evolution of the Yangtze Gorges and the time of their formation[J]. Geomorphology, 41(2):125-135. Li J, Zhang Y, Dong S, et al. 2014. Cretaceous tectonic evolution of South China:A preliminary synthesis[J]. Earth-Science Reviews, 134:98-136. Li T Y, He Z L, He S, et al. 2015. Tectonic and thermal history during the Mesozoic and Cenozoic stage in Paizhouwan region, Jianghan Plain, mid Yangtze area[J]. Chinese Journal of Geophysics, 58(6):665-681. Li Y, He D, Li D, et al. 2018. Sedimentary provenance constraints on the Jurassic to Cretaceous paleogeography of Sichuan Basin, SW China[J]. Gondwana Research, 60:15-33. Li Z, Gao J, Liu C, et al. 2015. Present-day heat flow, thermal history, and tectonic subsidence of the Jianghan Basin[J]. Energy Exploration and Exploitation, 33(5):707-725. Liang Z W, Gao S, Hawkesworth C J, et al. 2018. Step-like growth of the continental crust in South China:Evidence from detrital zircons in Yangtze River sediments[J]. Lithos, 320-321:155-171. Lin X, Tian Y, Donelick R A, et al. 2018. Mesozoic and Cenozoic tectonics of the northeastern edge of the Tibetan Plateau:Evidence from modern river detrital apatite fission-track age constraints[J]. Journal of Asian Earth Sciences, 170:84-95. Lin X, Zheng D, Sun J, et al. 2015. Detrital apatite fission track evidence for provenance change in the Subei Basin and implications for the tectonic uplift of the Danghe Nan Shan(NW China)since the mid-Miocene[J]. Journal of Asian Earth Sciences, 111:302-311. Liu J, Zhang P, Lease R O, et al. 2013. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben:Insights from apatite fission track thermochronology[J]. Tectonophysics, 584(1):281-296. Liu S, Gurnis M, Ma P, et al. 2017. Reconstruction of northeast Asian deformation integrated with western Pacific plate subduction since 200Ma[J]. Earth-Science Reviews, 176:114-142. Liu S, Zhang G. 2013. Mesozoic basin development and its indication of collisional orogeny in the Dabie orogen[J]. Chinese Science Bulletin, 58(8):827-852. Liu X C, Wu Y B, Fisher C M, et al. 2017. Tracing crustal evolution by U-Th-Pb, Sm-Nd, and Lu-Hf isotopes in detrital monazite and zircon from modern rivers[J]. Geology, 45(2):103-106. Liu-Zeng J, Zhang J, McPhillips D, et al. 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology[J]. Earth and Planetary Science Letters, 490:62-76. Malusà M G, Fitzgerald P G. 2018. Application of thermochronology to geologic problems:Bedrock and detrital approaches[M]. Malusà M G, et al.(eds). Fission-Track Thermochronology and Its Application to Geology. Springer, Cham:191-209. Nie J, Ruetenik G, Gallagher K, et al. 2018. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation[J]. Nature Geoscience, 11:944-948. Richardson N, Densmore A L, Seward D, et al. 2010. Did incision of the Three Gorges begin in the Eocene?[J]. Geology, 38:551-554. Richardson N, Densmore A, Seward D, et al. 2008. Extraordinary denudation in the Sichuan Basin:Insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau[J]. Journal of Geophysical Research:Solid Earth, 113:1-23. Schildgen T F, van der Beek P A. 2018. The application of low-temperature thermochronology to the geomorphology of orogenic systems[M]. Malusà M G, et al.(eds). Fission-Track Thermochronology and Its Application to Geology. Springer, Cham:335-350. Shen C B, Donelick R A, O'Sullivan P B, et al. 2012a. Provenance and hinterland exhumation from LA-ICP-MS zircon U-Pb and fission-track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze block, central China[J]. Sedimentary Geology, 281:194-207. Shen C B, Mei L, Peng L, et al. 2012b. LA-ICP-MS U-Pb zircon age constraints on the provenance of Cretaceous sediments in the Yichang area of the Jianghan Basin, central China[J]. Cretaceous Research, 34:172-183. Sun X, Li C, Kuiper K F, et al. 2018. Geochronology of detrital muscovite and zircon constrains the sediment provenance changes in the Yangtze River during the late Cenozoic[J]. Basin Research, 30:636-649. Tang S L, Yan D P, Qiu L, et al. 2014. Partitioning of the Cretaceous Pan-Yangtze Basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics?[J]. Gondwana Research, 25(4):1644-1659. Tian Y, Kohn B, Hu S, et al. 2015. Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau:Implications for crustal dynamics[J]. Geophysical Research Letters, 42(1):29-35. Tian Y, Kohn B, Qiu N, et al. 2018. Eocene to Miocene out-of-sequence deformation in the eastern Tibetan Plateau:Insights from shortening structures in the Sichuan Basin[J]. Journal of Geophysical Research:Solid Earth, 123(2):1840-1855. Vermeesch P. 2018. Statistics for fission-track thermochronology[M]//Malusà M G, et al.(eds). Fission-Track Thermochronology and Its Application to Geology. Springer, Cham:109-122. Wang E, Wan J, Liu J. 2003. Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun range in Pulu area:Constraints on timing of uplift of northern margin of the Tibetan Plateau[J]. Journal of Geophysical Research:Solid Earth, 108(8):1-15. Wang P, Zheng H, Liu S, et al. 2018. Late Cretaceous drainage reorganization of the Middle Yangtze River[J]. Lithosphere, 10(3):392-405. Wei H H, Wang E, Wu G L, et al. 2016. No sedimentary records indicating southerly flow of the paleo-Upper Yangtze River from the First Bend in southeastern Tibet[J]. Gondwana Research, 32:93-104. Wissink G K, Hoke G D, Garzione C N, et al. 2016. Temporal and spatial patterns of sediment routing across the southeast margin of the Tibetan Plateau:Insights from detrital zircon[J]. Tectonics, 35(11):2538-2563. Wu L, Mei L, Liu Y, et al. 2017. Multiple provenance of rift sediments in the composite basin-mountain system:Constraints from detrital zircon U-Pb geochronology and heavy minerals of the early Eocene Jianghan Basin, central China[J]. Sedimentary Geology, 349:46-61. Xu C, Zhou Z, Van Den Haute P, et al. 2005. Apatite-fission-track geochronology and its tectonic correlation in the Dabieshan orogen, central China[J]. Science in China(Ser D), 48(4):506-520. Yan D P, Qiu L, Wells M L, et al. 2018. Structural and geochronological constraints on the early Mesozoic north Longmen Shan thrust belt:Foreland fold-thrust propagation of the SW-Qinling orogenic belt, northeastern Tibetan Plateau[J]. Tectonics, 37:4595-4624. Yan Y, Yao D, Tian Z X, et al. 2018. Tectonic topography changes in Cenozoic East Asia:A landscape erosion-sediment archive in the South China Sea[J]. Geochemistry, Geophysics, Geosystems, 19(6):1731-1750. Yang G, Zhang X, Tian M, et al. 2011. Alluvial terrace systems in Zhangjiajie of northwest Hunan, China:Implications for climatic change, tectonic uplift and geomorphic evolution[J]. Quaternary International, 233(1):27-39. Yang R, Fellin M G, Herman F, et al. 2016. Spatial and temporal pattern of erosion in the Three Rivers Region, southeastern Tibet[J]. Earth and Planetary Science Letters, 433:10-20. Yang Z, Shen C, Ratschbacher L, et al. 2017. Sichuan Basin and beyond:Eastward foreland growth of the Tibetan Plateau from an integration of Late Cretaceous-Cenozoic fission track and(U-Th)/He ages of the eastern Tibetan Plateau, Qinling, and Daba Shan[J]. Journal of Geophysical Research:Solid Earth, 122(6):4712-4740. Yin G, Lu Y, Zhao H, et al. 2001. The tectonic uplift of the Hua Shan in the Cenozoic[J]Chinese Science Bulletin, 46(19):1665-1668. Zhang H, Oskin M E, Jing L Z, et al. 2016. Pulsed exhumation of interior eastern Tibet:Implications for relief generation mechanisms and the origin of high-elevation planation surfaces[J]. Earth Planetary Science Letters, 449:176-185. Zhang Y F, Li C A, Wang Q L, et al. 2008. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges[J]. Chinese Science Bulletin, 53(4):584-590. Zheng H. 2015. Birth of the Yangtze River:Age and tectonic-geomorphic implications[J]. National Science Review, 2:438-453. Zheng H, Clift P D, Wang P, et al. 2013. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences, 110(19):7556-7561. |
[1] | 魏传义, 刘春茹, 李长安, 尹功明, 韩非, 张岱, 李亚伟, 张玉芬. 宜昌砾石层石英Ti-Li心ESR年龄及其对三峡贯通时限的指示[J]. 地震地质, 2020, 42(1): 65-78. |
[2] | 林旭, 刘静, 彭保发, 李长安, 吴泉源. 青藏高原周围河流基岩和碎屑矿物低温热年代学研究进展[J]. 地震地质, 2017, 39(6): 1091-1110. |
[3] | 谭锡斌, 李元希, 徐锡伟, 陈玟禹, 许冲, 于贵华. 低温热年代学数据对龙门山推覆构造带南段新生代构造活动的约束[J]. 地震地质, 2013, 35(3): 506-517. |
[4] | 韩竹军, 向宏发, 姬计法. 洞庭盆地南缘常德-益阳-长沙断裂中段活动性研究[J]. 地震地质, 2011, 33(4): 839-854. |
[5] | 张石钧. 洞庭盆地的第四纪构造活动[J]. 地震地质, 1992, 14(1): 32-40. |
[6] | 徐杰, 邓起东, 张玉岫, 殷秀华, 虢顺民, 牛娈芳. 江汉-洞庭盆地构造特征和地震活动的初步分析[J]. 地震地质, 1991, 13(4): 332-342. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||