地震地质 ›› 2017, Vol. 39 ›› Issue (6): 1091-1110.DOI: 10.3969/j.issn.0253-4967.2017.06.001
林旭1,2, 刘静3, 彭保发1, 李长安4, 吴泉源2
收稿日期:
2017-08-10
修回日期:
2017-10-12
出版日期:
2017-12-20
发布日期:
2018-01-23
通讯作者:
吴泉源,教授,E-mail:wqy6420582@163.com
作者简介:
林旭,男,1984年生,2016年于中国科学院地质与地球物理研究所获第四纪地质学专业博士学位,讲师,主要从事新生代构造研究,电话:13325135055,E-mail:hanwuji-life@163.com。
基金资助:
LIN Xu1,2, LIU Jing3, PENG Bao-fa1, LI Chang-an4, WU Quan-yuan2
Received:
2017-08-10
Revised:
2017-10-12
Online:
2017-12-20
Published:
2018-01-23
摘要: 大型河流是陆源碎屑物质搬运入海、入盆的主要方式,对全球地球化学循环起到了重要的作用。青藏高原是东亚和南亚大型河流的主要发源地,来源于这些河流的碎屑沉积物,不仅提供了源区重要的地质演化信息,同时还记录了河流本身的演化发育情况。碎屑矿物(锆石、磷灰石等)低温热年代学方法可对河流物源区进行限定,建立其源-汇沉积体系;还可以结合区域构造变形分析,获得河流潜在的物源区和高原地貌格局的形成年代,是近几年的研究热点。文中在近几年青藏高原周围的大型河流碎屑矿物和河谷基岩低温热年代学研究结果的基础上,对这些成果进行了总结和梳理。提出在进行河流碎屑矿物低温热年代学分析时,应在河流上游、中游和下游关键地点进行系统采样,同时加强主要支流的样品分析,才能给出更为详尽的区域热历史演化结果。在河谷基岩低温热年代学分析时,针对同一河流不同河段采用同一低温热年代学方法和不同河段同一研究位置采用多矿物(磷灰石、锆石等)低温热年代学分析方法,给出的河流下切时间序列更完整。并建议在青藏高原地区,将河谷基岩和河流碎屑矿物低温热年代学结果相结合,同时运用研究区内构造分析以及其他沉积学等研究结果,可提供研究区内详细的构造和河流自身演化过程。
中图分类号:
林旭, 刘静, 彭保发, 李长安, 吴泉源. 青藏高原周围河流基岩和碎屑矿物低温热年代学研究进展[J]. 地震地质, 2017, 39(6): 1091-1110.
LIN Xu, LIU Jing, PENG Bao-fa, LI Chang-an, WU Quan-yuan. A REVIEW OF LOW-TEMPERATURE THERMOCHRONOLOGY ON BEDROCK AND DETRITUS FROM RIVERS AROUND THE TIBETAN PLATEAU[J]. SEISMOLOGY AND GEOLOGY, 2017, 39(6): 1091-1110.
曹凯, 王国灿, Van Der Beek P. 2011. 热年代学年龄温度法和年龄高程法的应用条件:对采样策略及年龄表达的启示[J]. 地学前缘, 18(6):347-357.CAO Kai, WANG Guo-can, Van Der Beek P. 2011. Restriction on the application of thermochronologic age-temperature and age-elevation relationships:Some insights into sampling strategies and age interpretation[J]. Earth Science Frontiers, 18(6):347-357(in Chinese). 邓宾, 曾璐, 周庆, 等. 2017. 碎屑岩磷灰石单矿物多法定年进展与应用[J]. 地质科技情报, 36(1):77-86.DENG Bin, ZENG Lu, ZHOU Qing, et al. 2017. A review of detrital apatite single-grain LA-ICPMS multi-dating[J]. Geological Science and Technology Information, 36(1):77-86(in Chinese). 丁林, 王庆隆. 1995. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J]. 科学通报, 40(16):1497-1500.DING Lin, WANG Qing-long. 1995. Fission track evidence for the Neocene rapid up lifting of the eastern Himalayan syntaxis[J]. Chinese Science Bulletin, 40(16):1497-1500. 方小敏. 2017. 青藏高原隆升阶段性[J]. 科技导报, 35(6):42-50.FANG Xiao-min. 2017. Phased uplift of the Tibetan plateau[J]. Science and Technology Review, 35(6):42-50(in Chinese). 胡修棉. 2017. 物源分析的一个误区:砂粒在河流搬运过程中的变化[J]. 古地理学报, 19(1):175-184.HU Xiu-mian. 2017. A misunderstanding in provenance analysis:Sand changes of mineral, roundness, and size in flowing-water transportation[J]. Journal of Palaeogeography, 19(1):175-184(in Chinese). 林旭, 孙继敏, 赵希涛. 2017. 磷灰石裂变径迹年龄 "拐点"的地质意义[J]. 第四纪研究, 37(3):570-580.LIN Xu, SUN Ji-min, ZHAO Xi-tao. 2017. The geological meaning of the breaking point from the apatite fission track dating age[J]. Quaternary Sciences, 37(3):570-580(in Chinese). 刘静, 丁林, 曾令森, 等. 2006. 青藏高原典型地区的地貌量化分析:兼对高原 "夷平面"的讨论[J]. 地学前缘, 13(5):285-299.LIU Jing, DING Lin, ZENG Ling-sen, et al. 2006. Large-scale terrain analysis of selected regions of the Tibetan plateau:discussion on the origin of plateau planation surface[J]. Earth Science Frontiers, 13(5):285-299(in Chinese). 苏哲, 刘静, 张鲁新, 等. 2011. 频谱分析法在反演造山带地形高差演化中的应用:以中国大别山、米仓山和美国内华达山脉为例[J]. 地质科学, 46(3):743-762.SU Zhe, LIU Jing, ZHANG Lu-xin, et al. 2011. Quantifying the late stage topographic evolution of orogenic belts by Fast Fourier Transform spectral analysis:Applications in the Dabie and Micang Shan, China and Sierra Nevada, U.S.A[J]. Chinese Journal of Geology, 46(3):743-762(in Chinese). 孙东霞, 季建清, 刘一多, 等. 2013. 怒江河砂岩屑磷灰石裂变径迹结果与流域地貌演化[J]. 地质科学, 48(2):501-514.SUN Dong-xia, JI Jian-qing, LIU Yi-duo, et al. 2013. Detrital apatite fission track analysis and geomorphologic evolution of the Nujiang River area[J]. Chinese Journal of Geology, 48(2):501-514(in Chinese). 孙东霞, 季建清, 张志诚, 等. 2009. 雅鲁藏布江中下游流域地貌差异演化的岩屑磷灰石裂变径迹证据[J]. 科学通报, 54(23):3738-3747.SUN Dong-xia, JI Jian-qing, ZHANG Zhi-cheng, et al. 2009. AFT dating of detrital apatites from the Yarlung Zangbo Great Canyon:Implications for its distinct geomorphological evolution[J]. Chinese Science Bulletin, 54(23):3738-3747(in Chinese). 孙东霞, 钟大赉, 季建清, 等. 2015. 河砂岩屑磷灰石裂变径迹模拟流域热史:以藏东南察隅河为例[J]. 地球物理学报, 58(2):613-627.SUN Dong-xia, ZHONG Da-lai, JI Jian-qing, et al. 2015. Inversion model of drainage basins' tactono-thermal evolution through detrital AFT ages:A case study of Chayu River in southeastern Tibet[J]. Chinese Journal of Geophysics, 58(2):613-627(in Chinese). 孙继敏. 2014. 地球系统科学的研究范例:青藏高原隆升的地貌、环境、气候效应[J]. 中山大学学报(自然科学版), 53(6):1-9.SUN Ji-min. 2014. Case study based on earth system science theory:Geomorphic, environmental, and climatic effects of the tectonic uplift of the Tibetan plateau[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 53(6):1-9(in Chinese). 孙敬博, 陈文, 喻顺, 等. 2017. 锆石(U-Th)/He 定年技术研究[J]. 岩石学报, 33(6):1947-1956.SUN Jing-bo, CHEN Wen, YU Shun, et al. 2017. Study on zircon(U-Th)/He dating technique[J]. Acta Petrologica Sinica, 33(6):1947-1956(in Chinese). 田云涛, 袁玉松, 胡圣标, 等. 2017. 低温热年代学在沉积盆地研究中的应用:以四川盆地北部为例[J]. 地学前缘, 24(3):105-115.TIAN Yun-tao, YUAN Yu-song, HU Sheng-biao, et al. 2017. Application of low-temperature thermochronology to sedimentary basins:case studies in the northern Sichuan Basin[J]. Earth Science Frontiers, 24(3):105-115(in Chinese). 王二七, 陈良忠, 陈智樑. 2002. 在构造和气候因素制约下的雅鲁藏布江的演化[J]. 第四纪研究, 22(4):365-373.WANG Er-qi, CHEN Liang-zhong, CHEN Zhi-liang. 2002. Tectonic and climatic element-contrlled evoluton of the Yalungzangbu river in southern Tibet[J]. Quatanary Sciences, 22(4):365-373(in Chinese). 王国灿. 2002. 沉积物源区剥露历史分析的一种新途径:碎屑锆石和磷灰石裂变径迹热年代学[J]. 地质科技情报, 21(4):35-40.WANG Guo-can. 2002. A new approach to determine the exhumation history of the sediment provenance:detrital zircon and apatite fission-track thermochronology[J]. Geological Science and Technology Information, 21(4):35-40(in Chinese). 王丽宁, 季建清, 孙东霞, 等. 2010. 西南天山隆起时代的河床砂岩屑磷灰石裂变径迹证据[J]. 地球物理学报, 53(4):931-945.WANG Li-ning, JI Jian-qing, SUN Dong-xia, et al. 2010. The uplift history of south-western Tianshan-Implications from AFT analysis of detrital samples[J]. Chinese Journal of Geophysics, 53(4):931-945(in Chinese). 王修喜. 2017. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 32(3):234-244.WANG Xiu-xi. 2017. Applications of low temperature thermochronology in the tectonogeomorphology evolution of the Tibetan plateau[J]. Advances in Earth Science, 32(3):234-244(in Chinese). 肖萍, 刘静, 王伟, 等. 2015a. 云南德钦白马雪山岩体热历史及其对青藏高原三江地区构造地貌演化的指示意义[J]. 岩石学报, 31(5):1348-1360.XIAO Ping, LIU Jing, WANG Wei, et al. 2015a. The thermal history of the Baimaxueshan pluton in Deqin area and its implications for the tectonic-geomorphic evolution in the Three river region of Tibetan plateau[J]. Acta Petrologica Sinica, 31(5):1348-1360(in Chinese). 肖萍, 刘静, 王伟, 等. 2015b. 青藏高原东南缘芒康地区河流地貌演化的磷灰石U-Th/He记录[J]. 第四纪研究, 35(2):433-444.XIAO Ping, LIU Jing, WANG Wei, et al. 2015b. The evolution of fluvial geomorphology of Mangkang area(southeastern Tibetan plateau)recorded by apatite U-Th/He thermochronology[J]. Quaternary Sciences, 35(2):433-444(in Chinese). 徐芹芹, 季建清, 赵文韬, 等. 2016. 阿尔金-祁连山晚新生代隆升-剥露过程:来自岩屑磷灰石裂变径迹热年代学的制约[J]. 地质科学, 50(4):1044-1067.XU Qin-qin, JI Jiang-qing, ZHAO Wen-tao, et al. 2016. Late cenozoic uplift-exhumation history of the Altyn tagh and Qilian mountains:evidence from detrital apatite fission track thermochronology[J]. Chinese Journal of Geology, 50(4):1044-1067(in Chinese). 杨守业. 2006. 亚洲主要河流的沉积地球化学示踪研究进展[J]. 地球科学进展, 21(6):648-655.YANG Shou-ye. 2006. Advances in sedimentary geochemistry and tracing applications of Asian rivers[J]. Advances in Earth Science, 21(6):648-655(in Chinese). 张培震, 张会平, 郑文俊, 等. 2014. 东亚大陆新生代构造演化[J]. 地震地质, 36(3):574-585. doi:10.3969/j.issn. 0253-4967.2014.03.003.ZHANG Pei-zhen, ZHANG Hui-ping, ZHENG Wen-jun, et al. 2014. Cenozoic tectonic evolution of continental eastern Asia[J]. Seismology and Geology, 36(3):574-585(in Chinese). 张培震, 郑德文, 尹功明, 等. 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究, 26(1):5-13.ZHANG Pei-zhen, ZHENG De-wen, YIN Gong-ming, et al. 2006. Discussion on late Cenozoic growth and rise of northeastern margin of the Tibetan plateau[J]. Quaternary Sciences, 26(1):5-13(in Chinese). 郑德文, 武颖, 庞建章, 等. 2016. U-Th/He热年代学原理、测试及应用[J]. 第四纪研究, 36(5):1027-1036.ZHENG De-wen, WU Ying, PANG Jian-zhang, et al. 2016. Fundamentals, dating and application of U-Th/He thermochronology[J]. Quaternary Sciences, 36(5):1027-1036(in Chinese). 郑德文, 张培震, 万景林, 等. 2000. 碎屑颗粒热年代学:一种揭示盆山耦合过程的年代学方法[J]. 地震地质, 22(S1):25-36.ZHENG De-wen, ZHANG Pei-zhen, WAN Jin-lin, et al. 2000. Detrital grain thermochronology:A potential method for research on coupling process between basin and mountain[J]. Seismology and Geology, 22(S1):25-36(in Chinese). 郑德文, 张培震, 万景林, 等. 2006. 构造、气候与砾岩:以积石山和临夏盆地为例[J]. 第四纪研究, 26(1):63-69.ZHENG De-wen, ZHANG Pei-zhen, WAN Jing-lin, et al. 2006. Tectonic events, climate and conglomerate:Example from Jishishan Mountain and Linxia Basin[J]. Quaternary Sciences, 26(1):63-69(in Chinese). 郑洪波, 贾军涛. 2009. 大河的地质演化与构造控制[J]. 第四纪研究, 29(2):268-275.ZHENG Hong-bo, JIA Jun-tao. 2009. Geological evolution of big river systems and tectonic control[J]. Quaternary Sciences, 29(2):268-275(in Chinese). 周祖翼. 2014. 低温热年代学:原理与应用[M]. 北京:科学出版社:1-230.ZHOU Zu-yi. 2014. Low Temperature Thermochronology:Principles & Applications[M]. Science Press, Beijing:1-230(in Chinese). Bernet M. 2013. Detrital zircon fission-track thermochronology of the present-day Isère River drainage system in the Western Alps:no evidence for increasing erosion rates at 5Ma[J]. Geosciences, 3(3):528-542. Bernet M, Brandon M T, Garver J I, et al. 2004. Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps[J]. Geological Society of America Special Publication, 378(1):25-36. Bernet M, Zattin M, Garver J I, et al. 2001. Steady-state exhumation of the European Alps[J]. Geology, 29(1):35-38. Blayney T, Najman Y, Dupont-Nivet G, et al. 2016. Indentation of the Pamirs with respect to the northern margin of Tibet:constraints from the Tarim Basin sedimentary record[J]. Tectonics, 35(10):2345-2369. doi:10.1002/2016TC004222. Braun J. 2005. Quantitative constraints on the rate of landform evolution derived from low-temperature thermochronology[J]. Reviews in Mineralogy and Geochemistry, 58(1):351-374. Brewer I D. 2005. Detrital-mineral thermochronology:investigations of orogenic denudation in the Himalaya of central Nepal. Pennsylvania:The Pennsylvania State University:1-201. Brookfield M E. 1998. The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision:rivers draining southwards[J]. Geomorphology, 22(3-4):285-312. Brookfield M E. 2008. Evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision:rivers draining north from the Pamir syntaxis[J]. Geomorphology, 100(3-4):296-311. Burbank D W, Brewer I D, Sobel E R, et al. 2009. Single-crystal dating and the detrital record of orogenesis[M]//Nichols G, Williams E, Paola C. Sedimentary Processes, Environments and Basins:A Tribute to Peter Friend. Oxford:Blackwell Publishing Ltd, 253-278. Campbell I H, Reiners P W, Allen C M, et al. 2005. He-Pb double dating of detrital zircons from the Ganges and Indus Rivers:implication for quantifying sediment recycling and provenance studies[J]. Earth Planetary Science Letters, 237(3-4):402-432. Cao K, Bernet M, Wang G C, et al. 2013. Focused Pliocene-Quaternary exhumation of the Eastern Pamir domes, western China[J]. Earth Planetary Science Letters, 363:16-26. Cao K, Wang G C, Bernet M, et al. 2015. Exhumation history of the West Kunlun Mountains, northwestern Tibet:Evidence for a long-lived, rejuvenated orogen[J]. Earth and Planetary Science Letters, 432:391-403. Carrapa B. 2010. Resolving tectonic problems by dating detrital minerals[J]. Geology, 38(2):191-192. Carrapa B, Faiz bin Hassim M, Kapp P A, et al. 2017. Tectonic and erosional history of southern Tibet recorded by detrital chronological signatures along the Yarlung River drainage[J]. GSA Bulletin, 129(5-6):570-581. Carrapa B, Mustapha F S, Cosca M, et al. 2014. Multisystem dating of modern river detritus from Tajikistan and China:Implications for crustal evolution and exhumation of the Pamir[J]. Lithosphere, 6(6):443-455. Chatterjee S, Goswami A, Scotese C R. 2013. The longest voyage:tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia[J]. Gondwana Research, 23(1):238-267. Clark M K, House M, Royden L, et al. 2005. Late Cenozoic uplift of southeastern Tibet[J]. Geology, 33(6):525-528. Clift P D, Campbell I H, Pringle M S, et al. 2004. Thermochronology of the modern Indus River bedload:New insight into the controls on the marine stratigraphic record[J]. Tectonics, 23(5):TC5013. Clift P D, Carter A, Campbell I H, et al. 2006. Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam:Provenance and exhumation implications for Southeast Asia[J]. Geochemistry, Geophysics, Geosystems, 7(10):Q10005. Clift P D, Hodges K V, Heslop D, et al. 2008. Correlation of Himalayan exhumation rates and Asian monsoon intensity[J]. Nature Geoscience, 1(12):875-880. Corrigan J D, Crowley K D. 1990. Fission-track analysis of detrital apatites from sites 717 and 718, Leg 116, Central Indian Ocean[J]. Proceedings of the Ocean Drilling Program, Scientific Results. 116:75-92. Deng T, Wang X M, Fortelius M, et al. 2011. Out of Tibet:Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores[J]. Science, 333(6047):1285-1288. Ding L, Qasim M, Jadoon I A K, et al. 2016. The India-Asia collision in north Pakistan:Insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin[J]. Earth Planetary Science Letters, 455:49-61. Ding L, Spicer R A, Yang J, et al. 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 45(3):215-218. Ding L, Zhong D L, Yin A, et al. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis(Namche Barwa)[J]. Earth and Planetary Science Letters, 192(3):423-438. Dodson M H. 1973. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology, 40(3):259-274. Donelick R A, O'Sullivan P B, Ketcham R A. 2005. Apatite fission-track analysis[J]. Reviews in Mineralogy and Geochemistry, 58(1):49-94. Duvall A R, Clark M K, Avdeev B, et al. 2012. Widespread late Cenozoic increase in erosion rates across the interior of eastern Tibet constrained by detrital low-temperature thermochronometry[J]. Tectonics, 31(3):TC3014. Ehlers T A, Farley K A. 2003. Apatite(U-Th)/He thermochronometry:methods and applications to problems in tectonic and surface processes[J]. Earth and Planetary Science Letters, 206(1-2):1-14. Fielding E, Isacks B, Barazangi M, et al. 1994. How flat is Tibet?[J]. Geology, 22(2):163-167. Finnegan N J, Hallet B, Montgomery D R, et al. 2008. Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet[J]. Geological Society of America Bulletin, 120(1-2):142-155. Foster G L, Carter A. 2007. Insights into the patterns and locations of erosion in the Himalaya-A combined fission-track and in situ Sm-Nd isotopic study of detrital apatite[J]. Earth Planetary Science Letters, 257(3-4):407-418. Guo Z T, Ruddiman W F, Hao Q Z, et al. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 416(6877):159-163. House M A, Wernicke B P, Farley K A. 1998. Dating topography of the Sierra Nevada, California, using apatite(U-Th)/He ages[J]. Nature, 396(6706):66-69. Jagoutz O, Royden L, Holt A F, et al. 2015. Anomalously fast convergence of India and Eurasia caused by double subduction[J]. Nature Geoscience, 8(6):475-478. Jia D, Wei G Q, Chen Z X, et al. 2006. Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China:New insights from hydrocarbon exploration[J]. AAPG Bulletin, 90(9):1425-1447. Karlstrom K E, Crossey L J, Embid E, et al. 2017. Cenozoic incision history of the Little Colorado River:Its role in carving Grand Canyon and onset of rapid incision in the past ca. 2Ma in the Colorado River System[J]. Geosphere, 13(1):49-81. Kirby E, Reiners P W, Krol M A, et al. 2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau:Inferences from 40Ar/39Ar and (U-Th)/He thermochronology[J]. Tectonics, 21(1):1-20. Laslett G M, Green P F, Duddy I R, et al. 1987. Thermal annealing of fission tracks in apatite 2. A quantitative analysis[J]. Chemical Geology:Isotope Geoscience Section, 65(1):1-13. Li J J, Fang X M, Song C H, et al. 2014. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 81(3):400-423. Liu-Zeng J, Tapponnier P, Gaudemer Y, et al. 2007. Quantifying landscape differences across the Tibetan plateau:Implications for topographic relief evolution[J]. Journal of Geophysical Research:Earth Surface, 113(F4):F04018. Liu-Zeng J, Wen L, Oskin M, et al. 2011. Focused modern denudation of the Longmen Shan margin, eastern Tibetan plateau[J]. Geochemistry, Geophysics, Geosystems, 12(11):Q11007. Liu-Zeng J, Zhang J, McPhillips D, et al. 2017. Multiple episodes of fast exhumation since Late Cretaceous in the Three Rivers region, SE Tibet, revealed by low-temperature thermochronology[J]. Earth and Planetary Science Letters, in press. Lukens C E, Carrapa B, Singer B S, et al. 2012. Miocene exhumation of the Pamir revealed by detrital geothermochronology of Tajik rivers[J]. Tectonics, 31(2):TC2014. Métivier F, Gaudemer Y, Tapponnier P, et al. 1999. Mass accumulation rates in Asia during the Cenozoic[J]. Geophysical Journal International, 137(2):280-318. Molnar P, Stock J M. 2009. Slowing of India's convergence with Eurasia since 20Ma and its implications for Tibetan mantle dynamics[J]. Tectonics, 28(3):TC3001. Nie J, Stevens T, Rittner M, et al. 2015. Loess Plateau storage of Northeastern Tibetan plateau-derived Yellow River sediment[J]. Nature Communications, 7:10831. Ouimet W, Whipple K, Royden, et al. 2010. Regional incision of the eastern margin of the Tibetan plateau[J]. Lithosphere, 2(1):50-63. Reiners P W, Brandon M T. 2006. Using thermochronology to understand orogenic erosion[J]. Annual Review of Earth and Planetary Sciences, 34:419-466. Reiners P W, Spell T L, Nicolescu S, et al. 2004. Zircon(U-Th)/He thermochronometry:He diffusion and comparisons with 40 Ar/39 Ar dating[J]. Geochimica et Cosmochimica Acta, 68(8):1857-1887. Ritts B D, Yue Y, Graham S A, et al. 2008. From sea level to high elevation in 15 million years:Uplift history of the northern Tibetan plateau margin in the Altun Shan[J]. American Journal of Science, 308(5):657-678. Romans B W, Castelltort S, Covault J A, et al. 2016. Environmental signal propagation in sedimentary systems across timescales[J]. Earth Science Reviews, 153:7-29. Schildgen T F, Balco G, Shuster D L. 2010. Canyon incision and knickpoint propagation recorded by apatite 4 He/3 He thermochronometry[J]. Earth Planetary Science Letters, 293(3-4):377-387. Schmidt J L, Zeitler P K, Pazzaglia F J, et al. 2015. Knickpoint evolution on the Yarlung river:Evidence for late Cenozoic uplift of the southeastern Tibetan plateau margin[J]. Earth Planetary Science Letters, 430:448-457. Shen X M, Tian Y T, Li D W, et al. 2016. Oligocene-Early Miocene river incision near the first bend of the Yangze River:Insights from apatite(U-Th-Sm)/He thermochronology[J]. Tectonophysics, 687:223-231. Stüwe K, White L, Brown R. 1994. The influence of eroding topography on steady-state isotherms. Application to fission track analysis[J]. Earth Planetary Science Letters, 124(1-4):63-74. Stockli D F, Farley K A, Dumitru T A. 2000. Calibration of the apatite(U-Th)/He thermochronometer on an exhumed fault block, White Mountains, California[J]. Geology, 28(11):983-986. Sun J M, Windley B F. 2015. Onset of aridification by 34Ma across the Eocene-Oligocene transition in Central Asia[J]. Geology, 43(11):1015-1018. Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547):1671-1677. Tian Y T, Kohn B P, Hu S B, et al. 2015. Synchronous fluvial response to surface uplift in the eastern Tibetan plateau:Implications for crustal dynamics[J]. Geophysical Research Letters, 42(1):29-35. Tian Y T, Kohn B P, Gleadow A J W, et al. 2014. A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan plateau[J]. Journal of Geophysical Research:Solid Earth, 119(1):676-698. Tripathy-Lang A, Alka Hodges K V, Monteleone B D, et al. 2013. Laser(U-Th)/He thermochronology of detrital zircons as a tool for studying surface processes in modern catchments[J]. Journal of Geophysical Research:Earth Surface, 118(3):1333-1341. Van Der Beek P, Robert X, Mugnier J L, et al. 2006. Late Miocene-Recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission-track thermochronology of Siwalik sediments, Nepal[J]. Basin Research, 18(4):413-434. Van Der Beek P, Van Melle J, Guillot S, et al. 2009. Eocene Tibetan plateau remnants preserved in the northwest Himalaya[J]. Nature Geoscience, 2(5):364-368. Wang C S, Dai J G, Zhao X X, et al. 2014a. Outward-growth of the Tibetan plateau during the Cenozoic:A review[J]. Tectonophysics, 621:1-43. Wang E. 2017. Timing of the initial collision between the Indian and Asian continents[J]. Science China Earth Sciences, 60(4):626-634. Wang E, Kirby E, Furlong K P, et al. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 5(9):640-645. Wang E, Meng K, Su Z, et al. 2014. Block rotation:Tectonic response of the Sichuan Basin to the southeastward growth of the Tibetan plateau along the Xianshuihe-Xiaojiang fault[J]. Tectonics, 33(5):686-718. Wang E C, Wan J L, Liu J Q. 2003. Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun range in Pulu area:Constraints on timing of uplift of northern margin of the Tibetan plateau[J]. Journal of Geophysical Research:Solid Earth, 108(B8):ETG15-1. Wang G C, Cao K, Zhang K X, et al. 2011. Spatio-temporal framework of tectonic uplift stages of the Tibetan plateau in Cenozoic[J]. Science China Earth Sciences, 54(1):29-44. Wang P, Scherler D, Liu-Zeng J, et al. 2014c. Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet[J]. Science, 346(6212):978-981. Wang X M, Wang Y, Li Q, et al. 2015. Cenozoic vertebrate evolution and paleoenvironment in Tibetan plateau:Progress and prospects[J]. Gondwana Research, 27(4):1335-1354. Willett S D, Brandon M T. 2013. Some analytical methods for converting thermochronometric age to erosion rate[J]. Geochemistry, Geophysics, Geosystems, 14(1):209-222. Wilson C J L, Fowler A P. 2011. Denudational response to surface uplift in east Tibet:Evidence from apatite fission-track thermochronology[J]. Geological Society of America Bulletin, 123(9-10):1966-1987. Wissink G K, Hoke G D, Garzione C N, et al. 2016. Temporal and spatial patterns of sediment routing across the southeast margin of the Tibetan plateau:Insights from detrital zircon[J]. Tectonics, 35(11):2538-2563. Yang S Y, Bi L, Li C, et al. 2016a. Major sinks of the Changjiang(Yangtze River)-derived sediments in the East China Sea during the late Quaternary[J]. Geological Society, London, Special Publications, 429(1):137-152. Yang R, Fellin M G, Herman F, et al. 2016b. Spatial and temporal pattern of erosion in the Three Rivers Region, southeastern Tibet[J]. Earth and Planetary Science Letters, 433:10-20. Zhang H P, Eric K, John P, et al. 2017. Characterizing the transient geomorphic response to base-level fall in the northeastern Tibetan plateau[J]. Journal of Geophysical Research:Earth Surface, 122(2):546-572. Zhang H P, Oskin M E, Jing L Z, et al. 2016. Pulsed exhumation of interior eastern Tibet:Implications for relief generation mechanisms and the origin of high-elevation planation surfaces[J]. Earth Planetary Science Letters, 449:176-185. Zhang H P, Zhang P Z, Zheng D W, et al. 2014. Transforming the Miocene Altyn Tagh Fault slip into shortening of the north-western Qilian Shan:insights from the drainage basin geometry[J]. Terra Nova, 26(3):216-221. Zhang Y F, Li C A, Wang Q L, et al. 2008. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges[J]. Chinese Science Bulletin, 53(4):584-590. Zheng D W, Clark M K, Zhang P Z, et al. 2010. Erosion, fault initiation and topographic growth of the North Qilian Shan(northern Tibetan plateau)[J]. Geosphere, 6(6):937-941. Zheng D W, Wang W T, Wan J L, et al. 2017. Progressive northward growth of the northern Qilian Shan-Hexi Corridor(northeastern Tibet)during the Cenozoic[J]. Lithosphere, 9(3):408-416. Zheng H, Clift P D, Wang P, et al. 2013. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences, 110(19):7556-7561. Zheng H B. 2015. Birth of the Yangtze River:age and tectonic-geomorphic implications[J]. National Science Review, 2(4):438-453. |
[1] | 于书媛, 黄显良, 郑海刚, 李玲利, 骆佳骥, 丁娟, 范晓冉. 2022年门源MW6.7地震的同震破裂模型及应力研究[J]. 地震地质, 2023, 45(1): 286-303. |
[2] | 吴中海, 白玛多吉, 叶强, 韩帅, 史亚然, 尼玛次仁, 高扬. 西藏阿里阿鲁错地堑系的第四纪活动性、最新同震地表破裂及其地震地质意义[J]. 地震地质, 2023, 45(1): 67-91. |
[3] | 宋婷, 沈旭章, 梅秀苹, 焦煜媛, 李敏娟, 苏小芸, 季婉婧. 利用接收函数频率特征研究青藏高原东北缘地区的莫霍面性质[J]. 地震地质, 2022, 44(5): 1290-1312. |
[4] | 李宗旭, 贺日政, 冀战波, 李娱兰, 牛潇. 2009年7月24日西藏尼玛MS5.6地震的震源机制及其构造意义[J]. 地震地质, 2022, 44(4): 992-1010. |
[5] | 张驰, 李智敏, 任治坤, 刘金瑞, 张志亮, 武登云. 日月山断裂南段晚第四纪活动特征[J]. 地震地质, 2022, 44(1): 1-19. |
[6] | 盖海龙, 李智敏, 姚生海, 李鑫. 2022年青海门源MS6.9地震地表破裂特征的初步调查研究[J]. 地震地质, 2022, 44(1): 238-255. |
[7] | 何翔, 杜星星, 刘健, 李艺豪, 李群. 武威盆地第四纪沉积过程及其构造意义[J]. 地震地质, 2022, 44(1): 76-97. |
[8] | 臧阳, 俞言祥, 孟令媛, 韩颜颜. 青藏高原东北缘地震波衰减特征及地震震源参数研究[J]. 地震地质, 2021, 43(6): 1638-1656. |
[9] | 方东, 胡敏章, 郝洪涛. 青藏高原东南缘重力场多尺度分析及其构造含义[J]. 地震地质, 2021, 43(5): 1208-1232. |
[10] | 唐茂云, 刘静, 李翠平, 王伟, 张金玉, 许强. 青藏高原东南缘的新生代盆地古高度重建研究与进展[J]. 地震地质, 2021, 43(3): 576-599. |
[11] | 哈广浩, 任治坤, 刘金瑞, 李智敏, 李正芳, 闵伟, 周本刚. 青海都兰地区夏日哈活动断裂带的发现及其构造意义[J]. 地震地质, 2021, 43(3): 614-629. |
[12] | 李智敏, 李文巧, 李涛, 徐岳仁, 苏鹏, 郭鹏, 孙浩越, 哈广浩, 陈桂华, 袁兆德, 李忠武, 李鑫, 杨理臣, 马震, 姚生海, 熊仁伟, 张彦博, 盖海龙, 殷翔, 徐玮阳, 董金元. 2021年5月22日青海玛多MS7.4地震的发震构造和地表破裂初步调查[J]. 地震地质, 2021, 43(3): 722-737. |
[13] | 马骏, 周本刚, 王明明, 安力科. 鲜水河断裂带折多塘断裂西北段全新世活动的地质地貌依据[J]. 地震地质, 2020, 42(5): 1021-1038. |
[14] | 张波, 何文贵, 刘炳旭, 高效东, 庞炜, 王爱国, 袁道阳. 甘肃北山南缘俄博庙断裂的新活动特征及活动速率[J]. 地震地质, 2020, 42(2): 455-471. |
[15] | 李佳昱, 郑文俊, 王伟涛, 王英, 张培震, 王洋. 青藏高原东北部龙首山晚新生代剥露历史:来自磷灰石(U-Th)/He的证据[J]. 地震地质, 2020, 42(2): 472-491. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||