陈桂华, 徐锡伟, 闻学泽, 等. 2006. 数字航空摄影测量学方法在活动构造中的应用[J]. 地球科学-中国地质大学学报, 31(3):405-410. CHEN Gui-hua, XU Xi-wei, WEN Xue-ze, et al. 2006. Application of digital aerophotogrammetry in active tectonics[J]. Earth Science-Journal of China University of Geosciences, 31(3):405-410(in Chinese).
邓起东, 陈立春, 冉勇康. 2004. 活动构造定量研究与应用[J]. 地学前缘, 11(4):383-392. DENG Qi-dong, CHEN Li-chun, RAN Yong-kang. 2004. Quantitative studies and applications of active tectonics[J]. Earth Science Frontiers, 11(4):383-392(in Chinese).
邓起东, 张培震, 冉勇康, 等. 2002. 中国活动构造基本特征[J]. 中国科学(D辑), 32(12):1020-1030. DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang, et al. 2003. Basic characteristics of active tectonics of China[J]. Science in China(Ser D), 46(4):356-372.
丁国瑜, 田勤俭, 孔凡臣, 等. 1993. 活断层分段:原则、方法及应用[M]. 北京:地震出版社. DING Guo-yu, TIAN Qin-jian, KONG Fan-chen, et al. 1993. Segmentation of Active Faults:Principles, Methods and Applications[M]. Seismological Press, Beijing(in Chinese).
刘静, 陈涛, 张培震, 等. 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报, 58(1):41-45. LIU Jing, CHEN Tao, ZHANG Pei-zhen, et al. 2013. Illuminating the active Haiyuan Fault, China by airborne light detection and ranging[J]. Chinese Science Bulletin, 58(1):41-45(in Chinese).
马洪超. 2011. 激光雷达测量技术在地学中的若干应用[J]. 地球科学-中国地质大学学报, 36(2):347-354. MA Hong-chao. 2011. Review on applications of LiDAR mapping technology to geosciences[J]. Earth Science-Journal of China University of Geosciences, 36(2):347-354(in Chinese).
马素颜. 2009. 基于高分辨率卫星遥感数据提取DEM方法研究[D]. 上海:华东师范大学. MA Su-yan. 2009. Research on the extraction of DEM based on high resolution remotely-sensed data[D]. East China Normal University, Shanghai(in Chinese).
闵伟, 张培震, 何文贵, 等. 2002. 酒西盆地断层活动特征及古地震研究[J]. 地震地质, 24(1):35-44. doi:10.3969/j.issn.0253-4967.2002.01.004. MIN Wei, ZHANG Pei-zhen, HE Wen-gui, et al. 2002. Research on the active faults and paleoearthquakes in the western Jiuquan Basin[J]. Seismology and Geology, 24(1):35-44(in Chinese).
冉勇康, 邓起东. 1999. 古地震学研究的历史、现状和发展趋势[J]. 科学通报, 44(1):12-20. RAN Yong-kang, DENG Qi-dong. 1999. History, status and trend about the research of paleoseismology[J]. Chinese Science Bulletin, 44(10):880-889.
任治坤, 陈涛, 张会平, 等. 2014. LiDAR技术在活动构造研究中的应用[J]. 地质学报, 88(6):1196-1207. REN Zhi-kun, CHEN Tao, ZHANG Hui-ping, et al. 2014. LiDAR survey in active tectonics studies:An introduction and overview[J]. Acta Geologica Sinica, 88(6):1196-1207(in Chinese).
王朋涛, 邵延秀, 张会平, 等. 2016. sUAV摄影技术在活动构造研究中的应用:以海原断裂骟马沟为例[J]. 第四纪研究, 36(2):433-442. WANG Peng-tao, SHAO Yan-xiu, ZHANG Hui-ping, et al. 2016. The application of sUAV photogrammetry in active tectonics:Shanmagou site of Haiyuan Fault, for example[J]. Quaternary Sciences, 36(2):433-442(in Chinese).
魏占玉, Ramon A, 何宏林, 等. 2015. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质, 37(2):636-648. doi:10.3969/j.issn.0253-4967.2002.01.004. WEI Zhan-yu, Ramon A, HE Hong-lin, et al. 2015. Accuracy analysis of terrain point cloud acquired by "Structure from Motion" using aerial photos[J]. Seismology and Geology, 37(2):636-648(in Chinese).
袁道阳, 张培震, 刘百篪, 等. 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 78(2):270-278. YUAN Dao-yang, ZHANG Pei-zhen, LIU Bai-chi, et al. 2004. Geometrical imagery and tectonic transformation of late Quaternary active tectonics in northeastern margin of Qinghai-Xizang plateau[J]. Acta Geologica Sinica, 78(2):270-278(in Chinese).
张剑清, 潘励, 王树根. 2009. 摄影测量学[M]. 武汉:武汉大学出版社. ZHANG Jian-qing, PAN Li, WANG Shu-gen. 2009. Photogrammetry[M]. Wuhan University Press, Wuhan(in Chinese).
张祖勋, 张剑清. 2012. 数字摄影测量学[M]. 武汉:武汉大学出版社. ZHANG Zu-xun, ZHANG Jian-qing. 2012. Digital Photogrammetry[M]. Wuhan University Press, Wuhan(in Chinese).
郑文俊, 雷启云, 杜鹏, 等. 2015. 激光雷达(LiDAR):获取高精度古地震探槽信息的一种新技术[J]. 地震地质, 37(1):232-241. doi:10.3969/j.issn.0253-4967.2002.01.004. ZHENG Wen-jun, LEI Qi-yun, DU Peng, et al. 2015. 3-D laser scanner(LiDAR):A new technology for acquiring high precision palaeoearthquake trench information[J]. Seismology and Geology, 37(1):232-241(in Chinese).
Angster S, Wesnousky S, Huang W L, et al. 2016. Application of UAV photography to refining the slip rate on the Pyramid Lake fault zone, Nevada[J]. Bulletin of the Seismological Society of America, 106(2):785-798.
Arrowsmith J R, Zielke O. 2009. Tectonic geomorphology of the San Andreas fault zone from high resolution topography:An example from the Cholame segment[J]. Geomorphology, 113(1-2):70-81.
Baltsavias E P, Favey E, Bauder A, et al. 2001. Digital surface modelling by airborne laser scanning and digital photogrammetry for glacier monitoring[J]. The Photogrammetric Record, 17(98):243-273.
Bemis S P, Micklethwaite S, Turner D, et al. 2014. Ground-based and UAV-Based photogrammetry:A multi-scale, high-resolution mapping tool for structural geology and paleoseismology[J]. Journal of Structural Geology, 69:163-178.
Bi H Y, Zheng W J, Ren Z K, et al. 2017. Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry[J]. International Journal of Remote Sensing, 38:2495-2510.
Chen T, Zhang P Z, Liu J, et al. 2014. Quantitative study of tectonic geomorphology along Haiyuan Fault based on airborne LiDAR[J]. Chinese Science Bulletin, 59(20):2396-2409.
Crone A J, Haller K M. 1991. Segmentation and the coseismic behavior of Basin and Range normal faults:Examples from east-central Idaho and southwestern Montana, U.S.A.[J]. Journal of Structural Geology, 13(2):151-164.
Cunningham D, Grebby S, Tansey K, et al. 2006. Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia[J]. Geophysical Research Letters, 33(20):L20308.
Fonstad M A, Dietrich J T, Courville B C, et al. 2013. Topographic structure from motion:A new development in photogrammetric measurement[J]. Earth Surface Processes and Landforms, 38(4):421-430.
Fraser C S, Cronk S. 2009. A hybrid measurement approach for close-range photogrammetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 64(3):328-333.
Graham L C. 1974. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 62(6):763-768.
Harwin S, Lucieer A. 2012. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle(UAV)imagery[J]. Remote Sensing, 4(6):1573-1599.
Hudnut K W, Borsa A, Glennie C, et al. 2002. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California, earthquake(MW7.1)from airborne laser swath mapping[J]. Bulletin of the Seismological Society of America, 92(4):1570-1576.
James M R, Robson S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera:Accuracy and geoscience application[J]. Journal of Geophysical Research:Earth Surface, 117(F3):94-96.
Javernick L, Brasington J, Caruso B. 2014. Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry[J]. Geomorphology, 213:F03017.
Johnson K, Nissen E, Saripalli S, et al. 2014. Rapid mapping of ultrafine fault zone topography with structure from motion[J]. Geosphere, 10(5):969-986.
Lasserre C, Morel P H, Gaudemer Y, et al. 1999. Postglacial left slip rate and past occurrence of M ≥ 8 earthquakes on the western Haiyuan Fault, Gansu, China[J]. Journal of Geophysical Research:Solid Earth, 104(B8):17633-17651.
Lin Z, Kaneda H, Mukoyama S, et al. 2013. Detection of subtle tectonic-geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey[J]. Geomorphology, 182:104-115.
Lucieer A, de Jong S M, Turner D. 2014a. Mapping landslide displacements using Structure from Motion(SfM)and image correlation of multi-temporal UAV photography[J]. Progress in Physical Geography, 38(1):97-116.
Lucieer A, Turner D, King D H, et al. 2014b. Using an unmanned aerial vehicle(UAV)to capture micro-topography of Antarctic moss beds[J]. International Journal of Applied Earth Observation and Geoinformation, 27:53-62.
Machette M N, Personius S F, Nelson A R, et al. 1991. The Wasatch fault zone, Utah-Segmentation and history of Holocene earthquakes[J]. Journal of Structural Geology, 13(2):137-149.
Mancini F, Dubbini M, Gattelli M, et al. 2013. Using unmanned aerial vehicles(UAV)for high-resolution reconstruction of topography:The structure from motion approach on coastal environments[J]. Remote Sensing, 5(12):6880-6898.
Matthews N A. 2008. Aerial and close-range photogrammetric technology:Providing resource documentation, interpretation, and preservation:Technical note, 428[R]. U.S. Department of the Interior, Bureau of Land Management, National Operations Center, Denver, Colorado:42.
McCalpin J P. 1996. Trench technology[C]//The Paleoseismology Workshop of 30th IGC. Beijing:86-111.
Micheletti N, Chandler J H, Lane S N. 2015. Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone[J]. Earth Surface Processes and Landforms, 40(4):473-486.
Middleton T A, Walker R T, Parsons B, et al. 2016. A major, intraplate, normal-faulting earthquake:The 1739 Yinchuan event in northern China[J]. Journal of Geophysical Research:Solid Earth, 121(1):293-320.
Oskin M E, Arrowsmith J R, Corona A H, et al. 2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LIDAR[J]. Science, 335(6069):702-705.
Ouédraogo M M, Degré A, Debouche C, et al. 2014. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds[J]. Geomorphology, 214:339-355.
Peltzer G, Tapponnier P, Armijo R. 1989. Magnitude of late Quaternary left-lateral displacements along the north edge of Tibet[J]. Science, 246(4935):1285-1289.
Rabus B, Eineder M, Roth A, et al. 2003. The shuttle radar topography mission:A new class of digital elevation models acquired by spaceborne radar[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 57(4):241-262.
Reitman N G, Bennett S E K, Gold R D, et al. 2015. High-resolution trench photomosaics from image-based modeling:Workflow and error analysis[J]. Bulletin of the Seismological Society of America, 105(5):2354-2366.
Ren Z K, Zhang Z W, Chen T, et al. 2016. Clustering of offsets on the Haiyuan Fault and their relationship to paleoearthquakes[J]. Geological Society of America Bulletin, 128(1-2):3-18.
Ritts B D, Yue Y J, Graham S A. 2004. Oligocene-Miocene tectonics and sedimentation along the Altyn Tagh Fault, northern Tibetan plateau:Analysis of the Xorkol, Subei, and Aksay Basins[J]. The Journal of Geology, 112(2):207-229.
Snavely N, Seitz S M, Szeliski R. 2008. Modeling the world from internet photo collections[J]. International Journal of Computer Vision, 80(2):189-210.
Tapponnier P, Meyer B, Avouac J P, et al. 1990. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet[J]. Earth and Planetary Science Letters, 97(3-4):382-403.
Ullman S. 1979. The interpretation of structure from motion[J]. Proceedings of the Royal Society B:Biological Sciences, 203(1153):405-426.
Westoby M J, Brasington J, Glasser N F, et al. 2012. ‘Structure-from-Motion’ photogrammetry:A low-cost, effective tool for geoscience applications[J]. Geomorphology, 179:300-314.
Whitehead K, Moorman B J, Hugenholtz C H. 2013. Low-cost, on-demand aerial photogrammetry for glaciological measurement[J]. Cryosphere Discussions, 7(3):3043-3057.
Yuan D Y, Champagnac J D, Ge W P, et al. 2011. Late Quaternary right-lateral slip rates of faults adjacent to the lake Qinghai, northeastern margin of the Tibetan plateau[J]. Geological Society of America Bulletin, 123(9-10):2016-2030.
Zebker H A, Goldstein R M. 1986. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research:Solid Earth, 91(B5):4993-4999.
Zebker H A, Werner C L, Rosen P A, et al. 1994. Accuracy of topographic maps derived from ERS -1 interferometric radar[J]. IEEE transactions on Geoscience and Remote Sensing, 32(4):823-836.
Zhang P Z, Molnar P, Xu X W. 2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan plateau[J]. Tectonics, 26(5):TC5010.
Zheng W J, Zhang P Z, He W G, et al. 2013a. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan plateau:Evidence from decadal GPS measurements and late Quaternary slip rates on faults[J]. Tectonophysics, 584:267-280.
Zheng W J, Zhang H P, Zhang P Z, et al. 2013b. Late Quaternary slip rates of the thrust faults in western Hexi Corridor(northern Qilian Shan, China)and their implications for northeastward growth of the Tibetan plateau[J]. Geosphere, 9(2):342-354.
Zhou Y, Parsons B, Elliott J R, et al. 2015. Assessing the ability of Pleiades stereo imagery to determine height changes in earthquakes:A case study for the El Mayor-Cucapah epicentral area[J]. Journal of Geophysical Research:Solid Earth, 120(12):8793-8808.
Zhou Y, Walker R T, Hollingsworth J, et al. 2016. Coseismic and postseismic displacements from the 1978 MW7.3 Tabas-e-Golshan earthquake in eastern Iran[J]. Earth and Planetary Science Letters, 452:185-196.
Zielke O, Arrowsmith J R, Ludwig L G, et al. 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault[J]. Science, 327(5969):1119-1122.
Zielke O, Arrowsmith J R, Ludwig L G, et al. 2012. High-resolution topography-derived offsets along the 1857 Fort Tejon earthquake rupture trace, San Andreas Fault[J]. Bulletin of the Seismological Society of America, 102(3):1135-1154. |