毕丽思, 何宏林, 徐岳仁, 等. 2011. 基于高分辨率DEM的裂点序列提取和古地震序列的识别:以霍山山前断裂为实验区[J]. 地震地质, 33(4):963-977. doi:10.3969/j.issn.0253-4967.2011.04.019.
BI Li-si, HE Hong-lin, XU Yue-ren, et al. 2011. The extraction of knickpoint series based on the high resolution DEM data and the identification of paleo-earthquake series-A case study of the Huoshan Mts. piedmont fault[J]. Seismology and Geology, 33(4):963-977(in Chinese).
陈涛, 张培震, 刘静, 等. 2014. 机载激光雷达技术与海原断裂带的精细地貌定量化研究[J]. 科学通报, 59(14):1293-1304.
CHEN Tao, ZHANG Pei-zhen, LIU Jing, et al. 2014. Quantitative study of tectonic geomorphology along Haiyuan Fault based on airborne LiDAR[J]. Chinese Science Bulletin, 59(14):1293-1304(in Chinese).
陈志雄. 2008. 基于图像配准的SIFT算法研究与实现:. 武汉:武汉理工大学.
CHEN Zhi-xiong. 2008. The SIFT research and implementation based on the image registration. Dissertation. Wuhan University of Technology, Wuhan(in Chinese).
李美燕. 2014. 基于改进SFM方法的航空摄影测量应用研究:. 南宁:广西大学.
LI Mei-yan. 2014. Research on the application of improved SFM in aerial photogrammetry. Dissertation. Guangxi University, Nanning(in Chinese).
刘静, 陈涛, 张培震, 等. 2013. 机载激光雷达扫描揭示海原断裂断错微地貌的精细结构[J]. 科学通报, 58(1):41-45.
LIU Jing, CHEN Tao, ZHANG Pei-zhen, et al. 2013. Illuminating the active Haiyuan Fault, China by airborne light detection and ranging[J]. Chinese Science Bulletin, 58(1):41-45(in Chinese).
刘兴旺, 袁道阳, 何文贵. 2014. 祁连山北缘佛洞庙-红崖子断裂古地震特征初步研究[J]. 震灾防御技术, 9(3):411-419.
LIU Xing-wang, YUAN Dao-yang, HE Wen-gui. 2014. Preliminary study of palaeo-earthquakes on the Fodongmiao-Hongyazi Fault in the north margin of Qilian Mountain[J]. Technology for Earthquake Disaster Prevention, 9(3):411-419(in Chinese).
马洪超, 姚春静, 张生德. 2008. 机载激光雷达在汶川地震应急响应中的若干关键问题探讨[J]. 遥感学报, 12(6):925-932.
MA Hong-chao, YAO Chun-jing, ZHANG Sheng-de. 2008. Some technical issues of airborne LiDAR system applied to Wenchuan earthquake relief works[J]. Journal of Remote Sensing, 12(6):925-932(in Chinese).
任治坤, 陈涛, 张会平, 等. 2014. LiDAR技术在活动构造研究中的应用[J]. 地质学报, 88(6):1196-1207.
REN Zhi-kun, CHEN Tao, ZHANG Hui-ping, et al. 2014. LiDAR survey in active tectonics studies:An introduction and overview[J]. Acta Geologica Sinica, 88(6):1196-1207(in Chinese).
王鹏涛, 邵延秀, 张会平, 等. 2016. sUAV摄影技术在活动构造研究中的应用:以海原断裂骟马沟为例[J]. 第四纪研究, 36(2):433-442.
WANG Peng-tao, SHAO Yan-xiu, ZHANG Hui-ping, et al. 2016. The application of sUAV photogrammetry in active tectonics:Shaomagou site of Haiyuan Fault, for example[J]. Quaternary Science, 36(2):433-442(in Chinese).
魏占玉, Arrowsmith Ramon, 何宏林, 等. 2015. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质, 37(2):636-648. doi:10.3969/j.issn.0253-4967.2015.02.024.
WEI Zhan-yu, Arrowsmith Ramon, HE Hong-lin, et al. 2015. Accuracy analysis of terrain point cloud acquired by "structure from motion" using aerial photos[J]. Seismology and Geology, 37(2):636-648(in Chinese).
杨艳伟. 2009. 基于SIFT特征点的图像拼接技术研究:. 西安:西安电子科技大学.
YANG Yan-wei. 2009. Research on image mosaic based on SIFT feature points. Dissertation. Xidian University, Xi'an(in Chinese).
郑辉. 2010. 基于SIFT特征的全景图像拼接算法研究:. 武汉:武汉科技大学.
ZHENG Hui. 2010. Research of panorama image mosaic algorithm based on SIFT feature. Dissertation. Wuhan University of Science and Technology, Wuhan(in Chinese).
郑文俊, 雷启云, 杜鹏, 等. 2015. 激光雷达(LiDAR):获取高精度古地震探槽信息的一种新技术[J]. 地震地质, 37(1):232-241. doi:10.3969/j.issn.0253-4967.2015.01.018.
ZHENG Wen-jun, LEI Qi-yun, DU Peng, et al. 2015. 3-D laser scanner(LiDAR):A new technology for acquiring high precision palaeoearthquake trench information[J]. Seismology and Geology, 37(1):232-241(in Chinese).
Stephen A, Steven W, Huang W L, et al. 2015. Application of UAV photography to refining the slip rate on the Pyramid Lake fault zone, Nevada[J]. Bulletin of the Seismological Society of America, 106(2):785-798.
Bemis S P, Steven M, Turner D, et al. 2014. Ground-based and UAV-based photogrammetry:A multi-scale, high-resolution mapping tool for structural geology and paleoseismology[J]. Journal of Structural Geology, 69:163-178.
Castillo C, Pérez R, James M R, et al. 2012. Comparing the accuracy of several field methods for measuring gully erosion[J]. Soil Science Society of America Journal, 76(4):1319.
Chen T, Akciz S O, Hudnut K W, et al. 2015. Fault-slip distribution of the 1999 MW7.1 Hector Mine earthquake, California, estimated from postearthquake airborne LiDAR data[J]. Bulletin of the Seismological Society of America, 105(2A):776-790.
Fonstad M A, Dietrich J T, Courville B C, et al. 2013. Topographic structure from motion:A new development in photogrammetric measurement[J]. Earth Surface Processes and Landforms, 38:421-430.
Frankel K L, Dolan J F. 2007. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data[J]. Journal of Geophysical Research, 112(F2):20-25.
Gomez C. 2012. Historical 3D topographic reconstruction of the Iwaki Volcano using structure from motion from uncalibrated aerial photographs. University of Canterbury, Christchurch.
Harwin S, Lucieer A. 2012. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle(UAV)imagery[J]. Remote Sensing, 4(12):1573-1599.
Hilley G E, Arrowsmith J R. 2008. Geomorphic response to uplift along the Dragon's Back pressure ridge, Carrizo Plain, California[J]. Geology, 36:367-370.
Jaboyedoff M, Oppikofer T, Abellán A, et al. 2012. Use of LiDAR in landslide investigations:A review[J]. Natural Hazards, 61:5-28.
James M R, Robson S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera:Accuracy and geoscience application[J]. Journal of Geophysical Research, 117(F3):1-17.
James M R, Robson S. 2014. Sequential digital elevation models of active lava flows from ground-based stereo time-lapse imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 97:160-170.
Johnson K, Nissen E, Saripalli S, et al. 2014. Rapid mapping of ultrafine fault zone topography with structure from motion[J]. Geosphere, 10(5):969-986.
Jordan B R. 2015. A bird's-eye view of geology:The use of micro drones/UAVs in geologic fieldwork and education[J]. GSA Today, 25(7):50-52.
Kondo H, Toda S, Okumura K, et al. 2008. A fault scarp in an urban area identified by LiDAR survey:A case study on the Itoigawa-Shizuoka tectonic line, Central Japan[J]. Geomorphology, 11:731-739.
Lowe D. 2004. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 60:91-110.
Javernick L, Brasington J, Caruso B. 2014. Modeling the topography of shallow braided rivers using structure-from-motion photogrammetry[J]. Geomorphology, 213:166-182.
Micheletti Na, Chandler J H, Lane S N. 2014. Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone[J]. Earth Surface Processes and Landforms, 40(4):473-486.
Micheletti N, Chandler J H, Lane S N. 2015. Structure from motion(SfM)photogrammetry[M]//Clarke L E, Nield J M(eds). Geomorphological Techniques. British Society for Geomorphology, London.
Middleton T A, Walker R T, Parsons B, et al. 2016. A major, intraplate, normal-faulting earthquake:The 1739 Yinchuan event in northern China[J]. Journal of Geophysical Research, 121(1):293-320. doi:10.1002/2015JB012355.
Reitman N G, Bennett S E K, Gold R D, et al. 2015. High-resolution trench photomosaics from image-based modeling:Workflow and error analysis[J]. Bulletin of the Seismological Society of America, 105(5). doi:10.1785/0120150041.
Oskin M E, Le K, Strane M D. 2007. Quantifying fault-zone activity in arid environments with high-resolution topography[J]. Geophysical Research Letters, 34(23):1-5.
Oskin M E, Arrowsmith J R, Corona A H, et al. 2012. Nearfield deformation from the El Mayor-Cucapah earthquake revealed by differential LiDAR[J]. Science, 335:702-705.
Ren Z, Zhang Z, Chen T, et al. 2015. Clustering of offsets on the Haiyuan Fault and their relationship to paleoearthquakes[J]. Geological Society of America Bulletin, 128(1-2):3-18. doi:10.1130/B31155.1.
Riley S, Talbot N, Kirk G. 2000. A new system for RTK performance evaluation//Position Location and Navigation Symposium, IEEE 2000. 231-236.
Rosnell T, Honkavaara E. 2012. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera[J]. Sensors(Basel), 12(1):453-480.
Schulz W H. 2007. Landslide susceptibility revealed by LiDAR imagery and historical records, Seattle, Washington[J]. Engineering Geology, 89:67-87.
Snavely N, Seitz S N, Szeliski R. 2008. Modeling the world from internet photo collections[J]. International Journal of Computer Vision, 80:189-210.
Thompson S C, Weldon R J, Rubin C M, et al. 2002. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, Central Asia[J]. Journal of Geophysical Research, 107(B9):1-32.
Tomasi C, Kanade T. 1992. Shape and motion from image streams under orthography:A factorization method[J]. International Journal of Computer Vision, 9(2):137-154.
Triggs B, McLauchlan P F, Hartley R I, et al. 2000. Bundle Adjustment-A Modern Synthesis Vision Algorithms:Theory and Practice[M]. Springer Berlin Heidelberg, 298-372.
Verhoeven G. 2011. Taking computer vision aloft:Archaeological three-dimensional reconstructions from aerial photographs with photoscan[J]. Archaeological Prospection, 18:67-73.
Wei Ying-mei, Kang Lai, Yang Bing, et al. 2013. Applications of structure from motion:A survey[J]. Journal of Zhejiang University Science C, 14(7):486-494.
Westoby M J, Brasington J, Glasser N F, et al. 2012. ‘Structure-from-Motion’ photogrammetry:A low-cost, effective tool for geoscience applications[J]. Geomorphology, 179:300-314.
Zhou Y, Barry P, Elliott J R, et al. 2015. Assessing the ability of Pleiades stereo imagery to determine height changes in earthquakes:A case study for the El Mayor-Cucapah epicentral area[J]. Journal of Geophysical Research, 120(12):8793-8808. doi:10.1002/2015JB012358.
Zielke O, Arrowsmith J R, Ludwig L G, et al. 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault[J]. Science, 327:1119-1122.
Zielke O, Arrowsmith J R, Ludwig L G, et al. 2012. High resolution topography-derived offset along the 1857 Fort Tejon earthquake rupture trace, San Andreas Fault[J]. Seismological Society of America Bulletin, 12:1135-1154.
Zielke O, Klinger Y, Arrowsmith J R. 2015. Fault slip and earthquake recurrence along strike-slip faults:Contributions of high-resolution geomorphic data[J]. Tectonophysics, 638:43-62. |