[1] |
崔富荣, 刘进峰. 2018. 砂岩和花岗岩岩石表层光释光信号晒退速率对比及测年意义[J]. 地球环境学报, 9(3): 223—229.
|
|
CUI Fu-rong, LIU Jin-feng. 2018. Bleaching rate of IRSL signal of granite, sandstone and the significance for rock surface dating[J]. Journal of Earth Environment, 9(3): 223—229(in Chinese).
|
[2] |
何宏林, 魏占玉, 毕丽思, 等. 2015. 利用基岩断层面形貌定量特征识别古地震: 以霍山山前断裂为例[J]. 地震地质, 37(2): 400—412.
DOI
|
|
HE Hong-lin, WEI Zhan-yu, BI Li-si, et al. 2015. Identify paleo-earthquakes using quantitative morphology of bedrock fault surface: A case study on the Huoshan Piedmont Fault[J]. Seismology and Geology, 37(2): 400—412(in Chinese).
DOI
|
[3] |
罗明. 2019. 冰川漂砾与基岩断层面光释光测年探索[D]. 北京: 中国地震局地质研究所.
|
|
LUO Ming. 2019. OSL surface exposure dating of glacial boulders and bedrock fault scarp[D]. Institute of Geology, China Earthquake Administration, Beijing (in Chinese).
|
[4] |
周永胜. 2019. 基岩区断层黏滑与蠕滑的地质标志和岩石力学实验证据[J]. 地震地质, 41(5): 1266—1272.
DOI
|
|
ZHOU Yong-sheng. 2019. The Geological and rock mechanical distinction evidence between stick-slip and creep in host rock segments of fault[J]. Seismology and Geology, 41(5): 1266—1272(in Chinese).
DOI
|
[5] |
Avouac J P. 2015. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle[J]. Annual Review of Earth and Planetary Sciences, 43: 233—271. doi: 10.1146/annurev-earth-060614-105302.
|
[6] |
Brill D, Ageby L, Obert C, et al. 2022. Investigating the resetting of IRSL signals in beach cobbles and their potential for rock surface dating of marine terraces in Northern Chile[J]. Marine Geology, 443:106692. doi: 10.1016/j.margeo.2021.106692.
|
[7] |
Brown N D, Moon S. 2019. Revisiting erosion rate estimates from luminescence profiles in exposed bedrock surfaces using stochastic erosion simulations[J]. Earth and Planetary Science Letters, 528:115842. doi: 10.1016/j.epsl.2019.115842.
|
[8] |
Cui F, Qin J, Liu J, et al. 2022. Isolating quartz-dominated OSL signal of rock slice by using pulsed stimulation: Implications for dating burial age of cobbles[J]. Quaternary Geochronology, 72:101367. doi: 10.1016/j.quageo.2022.101367.
|
[9] |
Feathers J K, Frouin M, Bench T G. 2022. Luminescence dating of Enigmatic rock structures in New England, USA[J]. Quaternary Geochronology, 73:101402. doi: 10.1016/j.quageo.2022.101402.
|
[10] |
Freiesleben T, Sohbati R, Murray A, et al. 2015. Mathematical model quantifies multiple daylight exposure and burial events for rock surfaces using luminescence dating[J]. Radiation Measurements, 81: 16—22. doi: 10.1016/j.radmeas.2015.02.004.
|
[11] |
Gliganic L A, Meyer M C, May J H, et al. 2021. Direct dating of lithic surface artifacts using luminescence[J]. Science Advances, 7(23): eabb3424. doi: 10.1126/sciadv.abb3424.
|
[12] |
Harris R A. 2017. Large earthquakes and creeping faults[J]. Reviews of Geophysics, 55(1): 169—198. doi: 10.1002/2016RG000539.
|
[13] |
Jenkins G T H, Duller G A T, Roberts H M, et al. 2018. A new approach for luminescence dating glaciofluvial deposits: High precision optical dating of cobbles[J]. Quaternary Science Reviews, 192: 263—273. doi: 10.1016/j.quascirev.2018.05.036.
|
[14] |
Lehmann B, Herman F, Valla P G, et al. 2020. Postglacial erosion of bedrock surfaces and deglaciation timing: New insights from the Mont Blanc massif(western Alps)[J]. Geology, 48(2): 139—144. doi: 10.1130/G46585.1.
|
[15] |
Li Y, Nocquet J M, Shan X, et al. 2021. Geodetic observations of shallow creep on the Laohushan-Haiyuan Fault, northeastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 126(6): e2020JB021576. doi: 10.1029/2020JB021576.
|
[16] |
Liu J, Cui F, Murray A S, et al. 2019. Resetting of the luminescence signal in modern riverbed cobbles along the course of the Shiyang River, China[J]. Quaternary Geochronology, 49: 184—190. doi: 10.1016/j.quageo.2018.04.004.
|
[17] |
Liu Q, Chen J, Qin J, et al. 2022. MET-post-IR IRSL luminescence dating of cobbles buried in fluvial terraces in the Northern Chinese Tian Shan[J]. Quaternary Geochronology, 72: 101351. doi: 10.1016/j.quageo.2022.101351.
|
[18] |
Luo M, Chen J, Liu J, et al. 2018. A test of rock surface luminescence dating using glaciofluvial boulders from the Chinese Pamir[J]. Radiation Measurements, 120: 290—297. doi: 10.1016/j.radmeas.2018.07.017.
|
[19] |
Luo M, Chen J, Owen L A, et al. 2022. A novel approach for reconstructing slip histories for bedrock fault scarps using rock surface luminescence dating[J]. Geophysical Research Letters, 49(16): e2022GL099526. doi: 10.1029/2022GL099526.
|
[20] |
Ou X, Roberts H M, Duller G A T, et al. 2018. Attenuation of light in different rock types and implications for rock surface luminescence dating[J]. Radiation Measurements, 120: 305—311. doi: 10.1016/j.radmeas.2018.06.027.
|
[21] |
Ozener H, Dogru A, Turgut B. 2013. Quantifying aseismic creep on the Ismetpasa segment of the North Anatolian fault zone(Turkey)by 6 years of GPS observations[J]. Journal of Geodynamics, 67: 72—77. doi: 10.1016/j.jog.2012.08.002.
|
[22] |
Pederson J L, Chapot M S, Simms S R, et al. 2014. Age of Barrier Canyon-style rock art constrained by cross-cutting relations and luminescence dating techniques[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(36): 12986—12991. doi: 10.1073/pnas.1405402111.
PMID
|
[23] |
Schwartz S Y, Rokosky J M. 2007. Slow slip events and seismic tremor at circum-Pacific subduction zones[J]. Reviews of Geophysics, 45(3): RG3004. doi: 10.1029/2006RG000208.
|
[24] |
Smith L N, Sohbati R, Jain M. 2023. Rock surface luminescence dating of gravel determines the age of a glacial outburst megaflood, Glacial Lake Missoula, Montana, USA[J]. Geology, 51(4): 323—328. doi: 10.1130/G50721.1.
|
[25] |
Sohbati R, Jain M, Murray A. 2012a. Surface exposure dating of non-terrestrial bodies using optically stimulated luminescence: A new method[J]. Icarus, 221(1): 160—166. doi: 10.1016/j.icarus.2012.07.017.
|
[26] |
Sohbati R, Liu J, Jain M, et al. 2018. Centennial-to millennial-scale hard rock erosion rates deduced from luminescence-depth profiles[J]. Earth and Planetary Science Letters, 493: 218—230. doi: 10.1016/j.epsl.2018.04.017.
|
[27] |
Sohbati R, Murray A S, Chapot M S, et al. 2012b. Optically stimulated luminescence(OSL)as a chronometer for surface exposure dating[J]. Journal of Geophysical Research: Solid Earth, 117(B9): B09202. doi: 10.1029/2012JB009383.
|
[28] |
Wintle A G, Murray A S. 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols[J]. Radiation Measurements, 41(4): 369—391. doi: 10.1016/j.radmeas.2005.11.001.
|
[29] |
Zreda M, Noller J S. 1998. Ages of prehistoric earthquakes revealed by cosmogenic chlorine -36 in a bedrock fault scarp at Hebgen Lake[J]. Science, 282(5391): 1097—1099. doi: 10.1126/science.282.5391.1097.
PMID
|