[1] |
邓起东, 闻学泽. 2008. 活动构造研究: 历史、 进展与建议[J]. 地震地质, 30(1): 1—30.
|
|
DENG Qi-dong, WEN Xue-ze. 2008. A review on the research of active tectonics—History, progress and suggestions[J]. Seismology and Geology, 30(1): 1—30 (in Chinese).
|
[2] |
邓起东, 张培震, 冉勇康, 等. 2003. 中国活动构造与地震活动[J]. 地学前缘, 10(S1): 66—73.
|
|
DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang, et al. 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers, 10(S1): 66—73 (in Chinese).
|
[3] |
丁国瑜, 田勤俭, 孔凡臣, 等. 1993. 活断层分段——原则、 方法及应用[M]. 北京: 地震出版社.
|
|
DING Guo-yu, TIAN Qin-jian, KONG Fan-chen, et al. 1993. Segmentation of Active Fault[M]. Seismological Press, Beijing (in Chinese).
|
[4] |
|
|
LI Zheng-fang, XIAO Hai-bo, ZHOU Ben-gang. 2015. Effect of fault steps on propagation and termination behavior of strike-slip earthquake surface ruptures[J]. Seismology and Geology, 37(1): 126—138 (in Chinese).
DOI
|
[5] |
唐荣江, 朱守彪. 2020. 不同摩擦本构关系对断层自发破裂动力学过程的影响[J]. 地球物理学报, 63(10): 3712—3726.
DOI
|
|
TANG Rong-jiang, ZHU Shou-biao. 2020. The effect of different friction laws on dynamic simulations of spontaneous rupture propagation[J]. Chinese Journal of Geophysics, 63(10): 3712—3726 (in Chinese).
|
[6] |
闻学泽. 2001. 活动断裂的可变破裂尺度地震行为与级联破裂模式的应用[J]. 地震学报, 23(4): 380—390.
|
|
WEN Xue-ze. 2001. Earthquake behavior of variable rupture-scale on active faults and application of the cascade-rupturing model[J]. Acta Seismologica Sinica, 14(4): 404—416.
DOI
URL
|
[7] |
闻学泽, 范军, 易桂喜, 等. 2008. 川西安宁河断裂上的地震空区[J]. 中国科学(D辑), 38(7): 797—807.
|
|
WEN Xue-ze, FAN Jun, YI Gui-xi, et al. 2008. A seismic gap on the Anninghe Fault in western Sichuan, China[J]. Science in China(Ser D), 51(10): 1375—1387.
|
[8] |
杨宏峰, 姚素丽, 陈翔. 2022. 非均匀断层上的破裂传播及对震级预测的挑战[J]. 科学通报, 67(13): 1390—1403.
|
|
YANG Hong-feng, YAO Su-li, CHEN Xiang. 2022. Rupture propagation on heterogeneous fault: Challenges for predicting earthquake magnitude[J]. Chinese Science Bulletin, 67(13): 1390—1403 (in Chinese).
|
[9] |
张培震, 闵伟, 邓起东, 等. 2003. 海原活动断裂带的古地震与强震复发规律[J]. 中国科学(D辑), 33(8): 705—713.
|
|
ZHANG Pei-zhen, MIN Wei, DENG Qi-dong, et al. 2005. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan Fault, northwestern China[J]. Science in China(Ser D), 48(3): 364—375.
|
[10] |
Aki K. 1984. Asperities, barriers, characteristic earthquake and strong motion prediction[J]. Journal of Geophysical Research: Solid Earth, 89(B7): 5867—5872.
|
[11] |
Andrews D J. 1976a. Rupture propagation with finite stress in antiplane strain[J]. Journal of Geophysical Research: Solid Earth, 81(20): 3575—3582. doi: 10.1029/JB081i020p03575.
|
[12] |
Andrews D J. 1976b. Rupture velocity of plane strain shear cracks[J]. Journal of Geophysical Research: Solid Earth, 81(32): 5679—5687. doi: 10.1029/JB081i032p05679.
|
[13] |
Bai K, Ampuero J P. 2017. Effect of seismogenic depth and background stress on physical limits of earthquake rupture across fault step overs[J]. Journal of Geophysical Research: Solid Earth, 122(12): 10280—10298. doi: 10.1002/2017JB014848.
|
[14] |
Beeler N M, Tullis T E, Goldsby D L. 2008. Constitutive relationships and physical basis of fault strength due to flash heating[J]. Journal of Geophysical Research: Solid Earth, 113(B1). doi: 10.1029/2007JB004988.
|
[15] |
Bhat H S, Olives M, Dmowska R, et al. 2007. Role of fault branches in earthquake rupture dynamics[J]. Journal of Geophysical Research: Solid Earth, 112(B11). doi: 10.1029/2007JB005027.
|
[16] |
Biasi G P, Wesnousky S G. 2016. Steps and gaps in ground ruptures: Empirical bounds on rupture propagation[J]. Bulletin of the Seismological Society of America, 106(3): 1110—1124. doi: 10.1785/0120150175.
|
[17] |
Biasi G P, Wesnousky S G. 2017. Bends and ends of surface ruptures[J]. Bulletin of the Seismological Society of America, 107(6): 2543—2560. doi: 10.1785/0120160292.
|
[18] |
Biasi G P, Wesnousky S G. 2021. Rupture passing probabilities at fault bends and steps, with application to rupture length probabilities for earthquake early warning[J]. Bulletin of the Seismological Society of America, 111(4): 2235—2247. doi: 10.1785/0120200370.
|
[19] |
Black N M, Jackson D D. 2008. Probability of multifault rupture[J]. Bulletin of the Seismological Society of America, 98(6): 3017—3024. doi: 10.1785/0120070271.
|
[20] |
Chartier T, Scotti O, Lyon-Caen H. 2019. SHERIFS: Open-source code for computing earthquake rates in fault systems and constructing hazard models[J]. Seismological Research Letters, 90(4): 1678—1688. doi: 10.1785/0220180332.
|
[21] |
Chartier T, Scotti O, Lyon-Caen H, et al. 2017. Methodology for earthquake rupture rate estimates of fault networks: Example for the western Corinth rift, Greece[J]. Natural Hazards and Earth System Sciences, 17(10): 1857—1869. doi: 10.5194/nhess-17-1857-2017.
|
[22] |
Cheng J, Chartier T, Xu X. 2021a. Multisegment rupture hazard modeling along the Xianshuihe fault zone, southeastern Tibetan plateau[J]. Seismological Research Letters, 92(2A): 951—964. doi: 10.1785/0220200117.
|
[23] |
Cheng J, Xu X, Ren J, et al. 2021b. Probabilistic multi-segment rupture seismic hazard along the Xiaojiang fault zone, southeastern Tibetan plateau[J]. Journal of Asian Earth Sciences, 221:104940. doi: 10.1016/j.jseaes.2021.104940.
|
[24] |
Cheng J, Xu X, Yao Q, et al. 2021c. Seismic hazard of multi-segment rupturing for the Anninghe-Zemuhe-Daliangshan fault region, southeastern Tibetan plateau: Constraints from geological and geodetic slip rates[J]. Natural Hazards, 107(2): 1501—1525. doi: 10.1007/s11069-021-04643-7.
|
[25] |
Cocco M, Bizzarri A. 2002. On the slip-weakening behavior of rate- and state dependent constitutive laws[J]. Geophysical Research Letters, 29(11): 11—14. doi: 10.1029/2001gl013999.
|
[26] |
Cunningham W D, Mann P. 2007. Tectonics of strike-slip restraining and releasing bends[J]. Geological Society, London, Special Publications, 290(1): 1—12. doi: 10.1144/sp290.1.
|
[27] |
Dieterich J H. 1992. Earthquake nucleation on faults with rate- and state-dependent strength[J]. Tectonophysics, 211( 1-4): 115—134. doi: 10.1016/0040- 1951(92)90055-b.
|
[28] |
Douilly R, Oglesby D D, Cooke M L, et al. 2020. Dynamic models of earthquake rupture along branch faults of the eastern San Gorgonio Pass region in California using complex fault structure[J]. Geosphere, 16(2): 474—489. doi: 10.1130/ges02192.1.
|
[29] |
Duan B. 2019. Multicycle dynamics of the Aksay Bend along the Altyn Tagh Fault in northwest China: 1. A simplified double bend[J]. Tectonics, 38(3): 1101—1119. doi: 10.1029/2018tc005195.
|
[30] |
Duan B, Liu Z, Elliott A J. 2019. Multicycle dynamics of the Aksay Bend along the Altyn Tagh Fault in northwest China: 2. The realistically complex fault geometry[J]. Tectonics, 38(3): 1120—1137. doi: 10.1029/2018tc005196.
|
[31] |
Duan B, Oglesby D D. 2005. Multicycle dynamics of nonplanar strike-slip faults[J]. Journal of Geophysical Research: Solid Earth, 110(B3). doi: 10.1029/2004JB003298.
|
[32] |
Elliott A J, Oskin M E, Liu-Zeng J, et al. 2015. Rupture termination at restraining bends: The last great earthquake on the Altyn Tagh Fault[J]. Geophysical Research Letters, 42(7): 2164—2170. doi: 10.1002/2015gl063107.
|
[33] |
Elliott A J, Oskin M E, Liu-zeng J, et al. 2018. Persistent rupture terminations at a restraining bend from slip rates on the eastern Altyn Tagh Fault[J]. Tectonophysics, 733: 57—72. doi: 10.1016/j.tecto.2018.01.004.
|
[34] |
Erickson B A, Jiang J, Barall M, et al. 2020. The community code verification exercise for simulating sequences of earthquakes and aseismic slip(SEAS)[J]. Seismological Research Letters, 91(2A): 874—890. doi: 10.1785/0220190248.
|
[35] |
Field E H, Arrowsmith R J, Biasi G P, et al. 2014. Uniform California earthquake rupture forecast, version 3(UCERF3): The time-independent model[J]. Bulletin of the Seismological Society of America, 104(3): 1122—1180. doi: 10.1785/0120130164.
|
[36] |
Field E H, Jordan T H, Page M T, et al. 2017. A synoptic view of the third uniform California earthquake rupture forecast(UCERF3)[J]. Seismological Research Letters, 88(5): 1259—1267. doi: 10.1785/0220170045.
|
[37] |
Field E H, Working Group on California Earthquake Probabilities. 2018. Improving earthquake rupture forecasts using California as a guide[J]. Seismological Research Letters, 89(6): 2337—2346. doi: 10.1785/0220180151.
|
[38] |
Geller R J. 2011. Shake-up time for Japanese seismology[J]. Nature, 472(7344): 407—409. doi: 10.1038/nature10105.
|
[39] |
Giardini D, Grünthal G, Shedlock K M, et al. 1999. The GSHAP global seismic hazard map[J]. Annals of Geophysics, 42(6): 1225—1230. doi: 10.4401/ag-3784.
|
[40] |
Hamling I J, Hreinsdóttir S, Clark K, et al. 2017. Complex multifault rupture during the 2016 MW7.8 Kaikōura earthquake, New Zealand[J]. Science, 356(6334). doi: 10.1126/science.aam7194.
|
[41] |
Harris R A, Barall M, Aagaard B, et al. 2018. A suite of exercises for verifying dynamic earthquake rupture codes[J]. Seismological Research Letters, 89(3): 1146—1162. doi: 10.1785/0220170222.
|
[42] |
Harris R A, Barall M, Lockner D A, et al. 2021. A geology and geodesy based model of dynamic earthquake rupture on the Rodgers Creek-Hayward-Calaveras fault system, California[J]. Journal of Geophysical Research: Solid Earth, 126(3): e2020JB020577. doi: 10.1029/2020JB020577.
|
[43] |
Harris R A, Day S M. 1993. Dynamics of fault interaction: parallel strike-slip faults[J]. Journal of Geophysical Research: Solid Earth, 98(B3): 4461—4472. doi: 10.1029/92jb02272.
|
[44] |
Harris R A, Day S M. 1999. Dynamic 3D simulations of earthquakes on En Echelon Faults[J]. Geophysical Research Letters, 26(14): 2089—2092. doi: 10.1029/1999gl900377.
|
[45] |
Heaton T H. 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture[J]. Physics of the Earth and Planetary Interiors, 64(1): 1 —20. doi: 10.1016/0031-9201(90)90002-f.
|
[46] |
Hu F, Zhang Z, Chen X. 2016. Investigation of earthquake jump distance for strike-slip step overs based on 3-D dynamic rupture simulations in an elastic half-space[J]. Journal of Geophysical Research: Solid Earth, 121(2): 994—1006. doi: 10.1002/2015jb012696.
|
[47] |
Jiang J, Erickson B A, Lambert V R, et al. 2022. Community-driven code comparisons for three-dimensional dynamic modeling of sequences of earthquakes and aseismic slip[J]. Journal of Geophysical Research: Solid Earth, 127(3): e2021JB023519. doi: 10.1029/2021JB023519.
|
[48] |
Kaiser A, Balfour N, Fry B, et al. 2017. The 2016 Kaikōura, New Zealand, earthquake: Preliminary seismological report[J]. Seismological Research Letters, 88(3): 727—739. doi: 10.1785/0220170018.
|
[49] |
Kame N, Rice J R, Dmowska R. 2003. Effects of prestress state and rupture velocity on dynamic fault branching[J]. Journal of Geophysical Research: Solid Earth, 108(B5). doi: 10.1029/2002jb002189.
|
[50] |
Kase Y, Kuge K. 2001. Rupture propagation beyond fault discontinuities: Significance of fault strike and location[J]. Geophysical Journal International, 147(2): 330—342. doi: 10.1046/j.1365-246X.2001.00533.x.
|
[51] |
Kijko A, Sellevoll M A. 1989. Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes[J]. Bulletin of the Seismological Society of America, 79(3): 645—654. doi: 10.1785/bssa0790030645.
|
[52] |
Kyriakopoulos C, Oglesby D D, Rockwell T K, et al. 2019. Dynamic rupture scenarios in the Brawley seismic zone, Salton Trough, Southern California[J]. Journal of Geophysical Research: Solid Earth, 124(4): 3680—3707. doi: 10.1029/2018jb016795.
|
[53] |
Li Y, Nocquet J-M, Shan X, et al. 2021. Heterogeneous interseismic coupling along the Xianshuihe-Xiaojiang fault system, Eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 126(11): e2020JB021187. doi: 10.1029/2020JB021187.
|
[54] |
Li Y, Shan X, Gao Z, et al. 2023. Interseismic coupling, asperity distribution, and earthquake potential on major faults in southeastern Tibet[J]. Geophysical Research Letters, 50(8): e2022GL101209. doi: 10.1029/2022GL101209.
|
[55] |
Liu D, Duan B, Prush V B, et al. 2021. Observation-constrained multicycle dynamic models of the Pingding Shan earthquake gate along the Altyn Tagh Fault[J]. Tectonophysics, 814:228948. doi: 10.1016/j.tecto.2021.228948.
|
[56] |
Liu D, Duan B, Scharer K, et al. 2022. Observation-constrained multicycle dynamic models of the Southern San Andreas and the Northern San Jacinto Faults: Addressing complexity in paleoearthquake extent and recurrence with realistic 2D fault geometry[J]. Journal of Geophysical Research: Solid Earth, 127(2): e2021JB023420. doi: 10.1029/2021JB023420.
|
[57] |
Liu M, Stein S, Wang H. 2011. 2000 years of migrating earthquakes in North China: How earthquakes in mid-continents differ from those at plate boundaries[J]. Lithosphere, 3(2): 128—132. doi: 10.1130/l129.1.
|
[58] |
Liu Z, Duan B. 2014. Dynamics of parallel strike-slip faults with pore fluid pressure change and off-fault damage[J]. Bulletin of the Seismological Society of America, 104(2): 780—792. doi: 10.1785/0120130112.
|
[59] |
Liu Z, Duan B. 2015. Coseismic slip gradient and rupture jumps on parallel strike-slip faults[J]. Bulletin of the Seismological Society of America, 106(1): 204—212. doi: 10.1785/0120140337.
|
[60] |
Lozos J C. 2016. A case for historic joint rupture of the San Andreas and San Jacinto faults[J]. Science Advances, 2(3): e1500621. doi: 10.1126/sciadv.1500621.
|
[61] |
Lozos J C. 2021. The effect of along-strike variation in dip on rupture propagation on strike-slip faults[J]. Geosphere, 17(6): 1616—1630. doi: 10.1130/ges02391.1.
|
[62] |
Lozos J C. 2022. Dynamic rupture modeling of coseismic interactions on orthogonal strike-slip faults[J]. Geophysical Research Letters, 49(5): e2021GL097585. doi: 10.1029/2021gl097585.
|
[63] |
Lozos J C, Dieterich J H, Oglesby D D. 2014. The effects of d0 on rupture propagation on fault stepovers[J]. Bulletin of the Seismological Society of America, 104(4): 1947—1953. doi: 10.1785/0120130305.
|
[64] |
Lozos J C, Oglesby D D, Brune J N, et al. 2012. Small intermediate fault segments can either aid or hinder rupture propagation at stepovers[J]. Geophysical Research Letters, 39(18). doi: 10.1029/2012GL 053005.
|
[65] |
Lozos J C, Oglesby D D, Duan B, et al. 2011. The effects of double fault bends on rupture propagation: A geometrical parameter study[J]. Bulletin of the Seismological Society of America, 101(1): 385—398. doi: 10.1785/0120100029.
|
[66] |
Lu R, Liu Y, Xu X, et al. 2019. Three-dimensional model of the lithospheric structure under the eastern Tibetan plateau: Implications for the active tectonics and seismic hazards[J]. Tectonics, 38(4): 1292—1307. doi: 10.1029/2018TC005239.
|
[67] |
Mann P. 2007. Global catalogue, classification and tectonic origins of restraining- and releasing bends on active and ancient strike-slip fault systems[J]. Geological Society, London, Special Publications, 290(1): 13—142. doi: 10.1144/sp290.2.
|
[68] |
McClay K, Bonora M. 2001. Analog models of restraining stepovers in strike-slip fault systems[J]. AAPG Bulletin, 85(2): 233—260. doi: 10.1306/8626c7ad-173b-11d7-8645000102c1865d.
|
[69] |
Milner K R, Shaw B E, Field E H. 2022. Enumerating plausible multifault ruptures in complex fault systems with physical constraints[J]. Bulletin of the Seismological Society of America, 112(4): 1806—1824. doi: 10.1785/0120210322.
|
[70] |
Oglesby D. 2008. Rupture termination and jump on parallel offset faults[J]. Bulletin of the Seismological Society of America, 98(1): 440—447. doi: 10.1785/0120070163.
|
[71] |
Oglesby D D. 2005. The dynamics of strike-slip step-overs with linking dip-slip faults[J]. Bulletin of the Seismological Society of America, 95(5): 1604—1622. doi: 10.1785/0120050058.
|
[72] |
Oglesby D D. 2020. What can surface-slip distributions tell us about fault connectivity at depth?[J] Bulletin of the Seismological Society of America, 110(3): 1025—1036. doi: 10.1785/0120190245.
|
[73] |
Oglesby D D, Brune J N, Olsen K B, et al. 2015. Rupture propagation and ground motion of strike-slip stepovers with intermediate fault segments[J]. Bulletin of the Seismological Society of America, 105(1): 387—399. doi: 10.1785/0120140114.
|
[74] |
Oglesby D D, Mai P M. 2012. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara[J]. Geophysical Journal International, 188(3): 1071—1087. doi: 10.1111/j.1365-246X.2011.05289.x.
|
[75] |
Oskin M, Elliot A J, Duan B, et al. 2015. Earthquake gates: Linking rupture length to geologically constrained dynamics of fault complexity, with examples from the Altyn Tagh and San Andreas faults[C]. Geological Society of America Abstracts with Programs, 47(7): 35.
|
[76] |
Peshette P, Lozos J, Yule D, et al. 2019. Dynamic rupture modeling to investigate the role of fault geometry in jumping rupture between parallel-trace thrust faults[J]. Bulletin of the Seismological Society of America, 109(6): 2168—2186. doi: 10.1785/0120190003.
|
[77] |
Ramos M D, Thakur P, Huang Y, et al. 2022. Working with dynamic earthquake rupture models: A practical guide[J]. Seismological Research Letters, 93(4): 2096—2110. doi: 10.1785/0220220022.
|
[78] |
Rodriguez P A M, Oskin M E, Rockwell T K, et al. 2021. Joint earthquake ruptures of the San Andreas and San Jacinto faults, California, USA[J]. Geology, 50(4): 387—391. doi: 10.1130/g49415.1.
|
[79] |
Ryan K J, Oglesby D D. 2014. Dynamically modeling fault step overs using various friction laws[J]. Journal of Geophysical Research: Solid Earth, 119(7): 5814—5829. doi: 10.1002/2014JB011151.
|
[80] |
Scholz C H. 1998. Earthquakes and friction laws[J]. Nature, 391(6662): 37—42. doi: 10.1038/34097.
|
[81] |
Scholz C H. 2019. The Mechanics of Earthquakes and Faulting(Third edition)[M]. Cambridge University Press, Cambridge.
|
[82] |
Schwartz D P. 2018. Review: Past and future fault rupture lengths in seismic source characterization: The long and short of it[J]. Bulletin of the Seismological Society of America, 108(5A): 2493—2520. doi: 10.1785/0120160110.
|
[83] |
Schwartz D P, Coppersmith K J. 1984. Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones[J]. Journal of Geophysical Research: Solid Earth, 89(B7): 5681—5698. doi: 10.1029/JB089iB07p05681.
|
[84] |
Segall P, Pollard D D. 1980. Mechanics of discontinuous faults[J]. Journal of Geophysical Research: Solid Earth, 85(B8): 4337—4350. doi: 10.1029/JB085iB08p04337.
|
[85] |
Shaw B E, Dieterich J H. 2007. Probabilities for jumping fault segment stepovers[J]. Geophysical Research Letters, 34(1). doi: 10.1029/2006GL027980.
|
[86] |
Sibson R H. 1985. Stopping of earthquake ruptures at dilational fault jogs[J]. Nature, 316(6025): 248—251. doi: 10.1038/316248a0.
|
[87] |
|
[88] |
Ulrich T, Gabriel A A, Ampuero J P, et al. 2019. Dynamic viability of the 2016 MW7.8 Kaikōura earthquake cascade on weak crustal faults[J]. Nature Communications, 10(1): 1213. doi: 10.1038/s41467-019-09125-w.
|
[89] |
Walsh E, Stahl T, Howell A, et al. 2023. Two-dimensional empirical rupture simulation: Examples and applications to seismic hazard for the Kaikōura region, New Zealand[J]. Seismological Research Letters, 94(2A): 852—870. doi: 10.1785/0220220231.
|
[90] |
Wang Hu, Liang M, Gao S, et al. 2018. Reevaluation of coseismic surface ruptures produced by the 1850 M7.5 Xichang earthquake on the southeastern margin of the Tibetan plateau and implications for rupture propagation at bends on strike-slip faults[J]. Bulletin of the Seismological Society of America, 108(1): 101—115. doi: 10.1785/0120170202.
|
[91] |
Wang Hu, Ran Y, Chen L, et al. 2017. Paleoearthquakes on the Anninghe and Zemuhe Fault along the southeastern margin of the Tibetan plateau and implications for fault rupture behavior at fault bends on strike-slip faults[J]. Tectonophysics, 721:167—178. doi: 10.1016/j.tecto.2017.08.030.
|
[92] |
Wang Hui, Liu M, Ye J, et al. 2017. Strain partitioning and stress perturbation around stepovers and bends of strike-slip faults: Numerical results[J]. Tectonophysics, 721:211—226. doi: 10.1016/j.tecto.2017.10.001.
|
[93] |
Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974—1002. doi: 10.1785/bssa0840040974.
|
[94] |
Wen X Z, Ma S L, Xu X W, et al. 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China[J]. Physics of the Earth and Planetary Interiors, 168(1-2): 16—36. doi: 10.1016/j.pepi.2008.04.013.
|
[95] |
Weng H, Yang H. 2017. Seismogenic width controls aspect ratios of earthquake ruptures[J]. Geophysical Research Letters, 44(6): 2725—2732. doi: 10.1002/2016gl072168.
|
[96] |
Wesnousky S G. 1994. The Gutenberg-Richter or characteristic earthquake distribution, which is it?[J]. Bulletin of the Seismological Society of America, 84(6): 1940—1959. doi: 10.1785/bssa0840061940.
|
[97] |
Wesnousky S G. 2006. Predicting the endpoints of earthquake ruptures[J]. Nature, 444(7117): 358—360. doi: 10.1038/nature05275.
|
[98] |
Wesnousky S G. 2008. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture[J]. Bulletin of the Seismological Society of America, 98(4): 1609—1632. doi: 10.1785/0120070111.
|
[99] |
Wesnousky S G, Biasi G P. 2011. The length to which an earthquake will go to rupture[J]. Bulletin of the Seismological Society of America, 101(4): 1948—1950. doi: 10.1785/0120110013.
|
[100] |
Wijk J V, Axen G, Abera R. 2017. Initiation, evolution and extinction of pull-apart basins: Implications for opening of the Gulf of California[J]. Tectonophysics, 719-720:37—50. doi: 10.1016/j.tecto.2017.04.019.
|
[101] |
Working Group on California Earthquake Probabilities. 1995. Seismic hazards in southern California: Probable earthquakes, 1994 to 2024[J]. Bulletin of the Seismological Society of America, 85(2): 379—439.
|
[102] |
Working Group on California Earthquake Probabilities. 2003. Earthquake probabilities in the San Francisco Bay region: 2002—2031[R]. US Geological Survey.
|
[103] |
Yao S, Yang H. 2022. Hypocentral dependent shallow slip distribution and rupture extents along a strike-slip fault[J]. Earth and Planetary Science Letters, 578:117296. doi: 10.1016/j.epsl.2021.117296.
|
[104] |
Yu H, Hu F, Xu J, et al. 2022. Dynamic rupture simulation of the 1833 Songming, Yunnan, China, M8.0 earthquake: Effects from stepover location and overlap distance[J]. Earth and Space Science, 9(2): e2021EA002100. doi: 10.1029/2021EA002100.
|
[105] |
Yu H, Zhang W, Zhang Z, et al. 2020. Investigation on the dynamic rupture of the 1970 MS7.7 Tonghai, Yunnan, China, earthquake on the Qujiang Fault[J]. Bulletin of the Seismological Society of America, 110(2): 898—919. doi: 10.1785/0120190185.
|
[106] |
Yuan Z, Li T, Su P, et al. 2022. Large surface-rupture gaps and low surface fault slip of the 2021 MW7.4 Maduo earthquake along a low-activity strike-slip fault, Tibetan plateau[J]. Geophysical Research Letters, 49(6): e2021GL096874. doi: 10.1029/2021GL096874.
|
[107] |
Zhang L, Liu Y, Li D, et al. 2022. Geometric control on seismic rupture and earthquake sequence along the Yingxiu-Beichuan Fault with implications for the 2008 Wenchuan earthquake[J]. Journal of Geophysical Research: Solid Earth, 127(12): e2022JB024113. doi: 10.1029/2022JB024113.
|