地震地质 ›› 2023, Vol. 45 ›› Issue (2): 517-535.DOI: 10.3969/j.issn.0253-4967.2023.02.013
修回日期:
2022-10-24
出版日期:
2023-04-20
发布日期:
2023-05-18
通讯作者:
*段永红, 男, 1963年生, 研究员, 博士, 长期从事地球内部结构及动力学, 地震层析成像、火山地震学等研究工作, E-mail: 作者简介:
周铭, 女, 1987年生, 2014年于中国地质大学(北京)获得地球物理学专业硕士学位, 工程师, 主要从事短周期密集台阵探测工作, E-mail: zhouming@gec.ac.cn。
基金资助:
ZHOU Ming(), DUAN Yong-hong*(), TAN Yu-juan, QIU Yong
Revised:
2022-10-24
Online:
2023-04-20
Published:
2023-05-18
摘要:
文中利用布设在东濮凹陷中北段由412个台站组成的密集台阵记录的数据, 基于噪声成像技术获得了研究区0~3.5km的三维S波速度模型, 所得结果显示速度结构特征与断裂的形态展布特征具有较强的关联性。主要得到的认识包括: 1)东濮凹陷中北段呈低速, 两侧的内黄隆起和鲁西隆起为高速特征, 隆起和凹陷的速度差异至少持续到3.5km深度处。2)东濮凹陷和鲁西隆起高、低速的分界位置与兰聊断裂一致。3)在1~3.5km深度处, 东濮凹陷中北段表现出了明显的低速特征, 说明古近纪兰聊断裂的活动强烈, 影响了东濮凹陷中北段的沉积特征; 在0~1km深度处, 凹陷和隆起的速度差异减小, 说明兰聊断裂在新近纪和第四纪的活动变弱, 该时期的沉积构造受兰聊断裂的影响减小。
中图分类号:
周铭, 段永红, 檀玉娟, 邱勇. 基于密集台阵的东濮凹陷中北段浅层速度结构[J]. 地震地质, 2023, 45(2): 517-535.
ZHOU Ming, DUAN Yong-hong, TAN Yu-juan, QIU Yong. THE 3-D SHALLOW VELOCITY STRUCTURE OF THE MIDDLE-NORTH SECTION OF THE DONGPU DEPRESSION DERIVED FROM DENSE ARRAY OBSERVATIONS OF AMBIENT NOISE[J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 517-535.
图1 a 东濮凹陷构造示意图(据施发剑(2012)修改); b 研究区的地形和历史地震分布图
Fig. 1 Structural map of Dongpu depression(after SHI Fa-jian, 2012)(a). Distribution map of topographic and historical earthquake in the study area(b).
图2 研究区的地形、断裂分布和密集台阵分布图 LL-F 兰聊断裂; CY-F 长垣断裂; LT-F 六塔断裂; MZ-F 马寨断裂; WeiX-F1 卫西1号断裂; WeiX-F2 卫西2号断裂; WeiD-F 卫东断裂; SJJ-F 石家集断裂; WX-F1 文西1号断裂; WX-F2 文西2号断裂(断裂信息为馆陶组断裂)
Fig. 2 The map of topographic and station locations in the study region.
图10 棋盘格测试模型和不同深度的棋盘格恢复结果 a 棋盘格测试模型; b-e 0.5km、1.5km、2.5km和3.5km深度的棋盘格恢复结果
Fig. 10 Checkerboard model and checkerboard resolution tests of the inversion results.
图11 不同深度处的S波速度分布 LL-F 兰聊断裂; CY-F 长垣断裂; LT-F 六塔断裂; MZ-F 马寨断裂; WeiX-F1 卫西1号断裂; WeiX-F2 卫西2号断裂; WeiD-F 卫东断裂; SJJ-F 石家集断裂; WX-F1 文西1号断裂; WX-F2 文西2号断裂
Fig. 11 The distribution of S-wave velocity at different depths.
图12 AA'、BB'、CC'、DD'和EE'剖面的速度分布特征 LL-F 兰聊断裂; CY-F 长垣断裂; LT-F 六塔断裂; MZ-F 马寨断裂; WeiX-F1 卫西1号断裂; WeiX-F2 卫西2号断裂; WeiD-F 卫东断裂; SJJ-F 石家集断裂; WX-F1 文西1号断裂; WX-F2 文西2号断裂
Fig. 12 The velocity distribution of AA', BB', CC', DD' and EE'.
[1] | 陈亚红, 张军, 董春勇, 等. 2020. 濮阳小震集中区地震丛集特征分析[J]. 地震地磁观测与研究, 41(2): 51-56. |
CHEN Ya-hong, ZHANG Jun, DONG Chun-yong, et al. 2020. Study on the characteristics of earthquake clustering in small earthquake concentrated area of Puyang[J]. Seismological and Geomagnetic Observation and Research, 41(2): 51-56. (in Chinese) | |
[2] | 程岳宏, 于兴河, 韩宝清, 等. 2010. 东濮凹陷北部古近系沙三段地球化学特征及地质意义[J]. 中国地质, 37(2): 357-366. |
CHENG Yue-hong, YU Xing-he, HAN Bao-qing, et al. 2010. Geochemical characteristics of the 3rd Member of Paleogene Shahejie Formation in Dongpu depression and their geological implications[J]. Geology in China, 37(2): 357-366. (in Chinese) | |
[3] | 戴骜鹏. 2014. 焦作地区第四纪主要断层研究[D]. 兰州: 中国地震局兰州地震研究所:15-46. |
DAI Ao-peng. 2014. Study of major Quaternary faults in Jiaozuo area[D]. China Earthquake Administration Lanzhou Institute of Seismology, Lanzhou: 15-46. (in Chinese) | |
[4] | 段永红, 王夫运, 张先康, 等. 2016. 华北克拉通中东部地壳三维速度结构模型(HBCrust1.0)[J]. 中国科学(D辑), 46(6): 845-856. |
DUAN Yong-hong, WANG Fu-yun, ZHANG Xian-kang, et al. 2016. Three dimensional crustal velocity structure model of the middle-eastern North China Craton (HBCrust1.0)[J]. Science in China (Ser D), 59(7): 1477-1488.
DOI URL |
|
[5] | 葛建党. 2001. 郯庐断裂在渤中凹陷的构造特征与油气成藏的关系[J]. 海洋石油, 1(4): 14-20. |
GE Jian-dang. 2001. The tectonic character of Tanlu fault(TLF)and the relation between TLF and hydrocarbon accumulation in Bozhong sag[J]. Offshore Oil, 1(4): 14-20. (in Chinese) | |
[6] | 何登发, 单帅强, 张煜颖, 等. 2018. 雄安新区的三维地质结构: 来自反射地震资料的约束[J]. 中国科学(D辑), 48(9): 1207-1222. |
HE Deng-fa, SHAN Shuai-qiang, ZHANG Yu-ying, et al. 2018. 3-D geologic architecture of Xiong’an new area: constraints from seismicreflection data[J]. Science in China(Ser D), 61(8): 1007-1022.
DOI |
|
[7] | 姜磊, 徐志萍, 方盛明, 等. 2018. 利用重震资料研究豫北及邻区地壳结构特征与地震分布[J]. 地震地质, 40(2): 323-336. |
JIANG Lei, XU Zhi-ping, FANG Sheng-ming, et al. 2018. Deep structure of northern Henan Province and adjacent areas derived from gravity and seismic sounding data in relation to distribution of earthquakes[J]. Seismology and Geology, 40(2): 323-336. (in Chinese) | |
[8] | 李玲利, 黄显良, 姚华建, 等. 2020. 合肥市地壳浅部三维速度结构及城市沉积环境初探[J]. 地球物理学报, 63(9): 3307-3323. |
LI Ling-li, HUANG Xian-liang, YAO Hua-jian, et al. 2020. Shallow shear wave velocity structure from ambient noise tomography in Hefei city and its implication for urban sedimentary environment[J]. Chinese Journal of Geophysics, 63(9): 3307-3323. (in Chinese) | |
[9] | 马宝军, 漆家福, 于福生. 2017. 东濮凹陷构造变形的物理模拟研究[J]. 地球学报, 38(3): 430-438. |
MA Bao-jun, QI Jia-fu, YU Fu-sheng. 2017. An analysis of physical modeling of tectonic deformation in Dongpu Sag[J]. Acta Geoscientica Sinica, 38(3): 430-438. (in Chinese) | |
[10] | 尚墨翰. 2014. 东濮凹陷构造-沉积演化与油气成藏的关系[J]. 油气地质与采收率, 21(4): 50-53. |
SHANG Mo-han. 2014. Relationship between structural-depositional evolution and oil-gas accumulation in Dongpu sag[J]. Petroleum Geology and Recovery Efficiency, 21(4): 50-53. (in Chinese) | |
[11] | 施发剑. 2012. 兰聊断裂带的形成与演化[D]. 北京: 中国地质大学:1-60. |
SHI Fa-jian. 2012. The formation and evolution of Lanliao fault zone[D]. Beijing: China University of Geosciences:1-60. (in Chinese) | |
[12] | 唐民安, 王华. 2008. 东濮凹陷古近纪断裂活动的幕式特征及控盆作用[J]. 海洋地质与第四纪地质, 28(3): 55-59. |
TANG Min-an, WANG Hua. 2008. Episodic characteristics of faults and their effects on sedimentary and structural evolution during Paleogene: a case study of Dongpu depression[J]. Marine Geology & Quaternary Geology, 28(3): 55-59. (in Chinese) | |
[13] | 余海波, 程秀申, 徐田武, 等. 2020. 东濮凹陷古近纪盆地结构控烃控藏特征[J]. 现代地质, 34(6): 1119-1131. |
YU Hai-bo, CHENG Xiu-shen, XU Tian-wu, et al. 2020. Characteristics about hydrocarbon accumulation controlled by structure in Paleogene of Dongpu sag[J]. Geoscience, 34(6): 1119-1131. | |
[14] | 于磊, 张健, 高玲举, 等. 2017. 鲁西隆起重磁异常特征及其构造活动性分析[J]. 地震学报, 39(5): 694-707. |
YU Lei, ZHANG Jian, GAO Ling-ju, et al. 2017. Gravity-magnetic anomalies and tectonic activities in Luxi uplift[J]. Acta Seismologica Sinica, 39(5): 694-707. (in Chinese) | |
[15] | 张克鑫, 漆家福, 赵衍彬, 等. 2007. 新生代东濮凹陷构造特征及其演化[J]. 新疆石油地质, 28(6): 714-717. |
ZHANG Ke-xin, QI Jia-fu, ZHAO Yan-bin, et al. 2007. Structure and evolution of Cenozoic in Dongpu sag[J]. Xinjiang Petroleum Geology, 28(6): 714-717. (in Chinese) | |
[16] | 张亚敏, 吕延仓, 徐林丽, 等. 2000. 东濮凹陷兰聊断裂带构造演化与油气勘探[J]. 石油与天然气地质, 21(1): 57-60. |
ZHANG Ya-min, LÜ Yan-cang, XU Lin-li, et al. 2000. Structural evolution and hydrocarbon exploration of Lanliao fault belt in Dongpu depression[J]. Oil & Gas Geology, 21(1): 57-60. (in Chinese) | |
[17] | 郑建常, 吕子强, 许萍, 等. 2013. 濮阳小震集中区发震机理分析与讨论[J]. 中国地震, 29(1): 11-25. |
ZHENG Jian-chang, LÜ Zi-qiang, XU Ping, et al. 2013. Analyses and discussion on mechanism of clustered microearthquakes in Puyang, Henan Province[J]. Earthquake Research in China, 29(1): 11-25. (in Chinese) | |
[18] |
周新科, 许化政. 2007. 东濮凹陷地质特征研究[J]. 石油学报, 28(5): 20-26.
DOI |
ZHOU Xin-ke, XU Hua-zheng. 2007. Discussion on geological features of Dongpu depression[J]. Acta Pretrolei Sinica, 28(5): 20-26. (in Chinese) | |
[19] |
左银辉, 唐世林, 张旺, 等. 2017. 东濮凹陷新生代构造-热历史研究[J]. 地学前缘, 24(3): 149-156.
DOI |
ZUO Yin-hui, TANG Shi-lin, ZHANG Wang, et al. 2017. Cenozoic thermal history of the Dongpu sag, Bohai Bay Basin[J]. Earth Science Frontiers, 24(3): 149-156. (in Chinese) | |
[20] |
Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 169(3): 1239-1260.
DOI URL |
[21] | Brocher T M. 2005. Empirical relations between elastic wave speeds and density in the Earth’s crust[J]. Bulletin of the Seismological Society of America, 95(6): 2081-2092. |
[22] |
Fang H J, Yao H J, Zhang H J, et al. 2015. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application[J]. Geophysical Journal International, 201(3): 1251-1263.
DOI URL |
[23] |
Flores-Estrella H, Yussim S, Lomnitz C. 2007. Seismic response of the Mexico City Basin: A review of twenty[J]. Natural Hazards, 40(2): 357-372.
DOI URL |
[24] |
Herrmann R B. 2013. Computer programs in seismology: An evolving tool for instruction and research[J]. Seismological Research Letters, 84(6): 1081-1088.
DOI URL |
[25] |
Huang Y C, Yao H J, Huang B S, et al. 2010. Phase velocity variation at periods of 0.5-3 seconds in the Taipei Basin of Taiwan from correlation of ambient seismic noise[J]. Bulletin of the Seismological Society of America, 100(5A): 2250-2263.
DOI URL |
[26] |
Li C, Yao H J, Fang H J, et al. 2016. 3-D near-surface shear-wave velocity structure from ambient-noise tomography and borehole data in the Hefei urban area, China[J]. Seismological Research Letters, 87(4): 882-892.
DOI URL |
[27] | Li C, Yao H J, Yang Y Y, et al. 2020. 3-D shear wave velocity structure in the shallow crust of the Tanlu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications[J]. Earth and Planetary Physics, 4(2): 1-12. |
[28] |
Li H Y, Su W, Wang C, et al. 2009. Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet[J]. Earth and Planetary Science Letters, 282(1-4): 201-211.
DOI URL |
[29] | Li G L, Yang Y J, Niu F L, et al. 2021. 3-D sedimentary structures beneath southeastern Australia constrained by passive seismic array data[J]. Journal of Geophysical Research: Solid Earth, 126(2): e2020JB019998. |
[30] |
Lin F C, Li D Z, Clayton R W, et al. 2013. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array[J]. Geophysics, 78(4): Q45-Q56.
DOI URL |
[31] |
Rawlinson N, Sambridge M. 2004. Wave front evolution in strongly heterogeneous layered media using the fast marching method[J]. Geophysical Journal International, 156(3): 631-647.
DOI URL |
[32] |
Yao H J, van der Hilst R D, de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps[J]. Geophysical Journal International, 166(2): 732-744.
DOI URL |
[33] | Yao H J, Gouedard P, McGuire J, et al. 2011. Structure of young East Pacific Rise lithosphere from ambient noise correlation analysis of fundamental- and higher-mode Scholte-Rayleigh waves[J]. Comptes Rendus Geoscience, 343(8-9): 571-583. |
[34] |
Zhou M, Tian X F, Wang F Y, et al. 2018. Shallow velocity structure of the Luoyang Basin derived from dense array observations of urban ambient noise[J]. Earthquake Science, 31(S1): 252-261.
DOI URL |
[1] | 熊诚, 谢祖军, 郑勇, 熊熊, 艾三喜, 谢仁先. 大别—郯庐造山带地壳上地幔Rayleigh面波层析成像[J]. 地震地质, 2019, 41(1): 1-20. |
[2] | 谢辉, 马禾青, 焦明若, 马小军, 张楠, 李青梅. 利用背景噪声成像技术反演宁夏及邻区S波速度结构[J]. 地震地质, 2017, 39(3): 605-622. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||