地震地质 ›› 2023, Vol. 45 ›› Issue (1): 49-66.DOI: 10.3969/j.issn.0253-4967.2023.01.003
原浩东1),2)(), 李安1),3),*(), 黄伟亮2), 胡宗凯1),3), 左玉琦1),3), 杨晓平1),3)
收稿日期:
2022-04-24
修回日期:
2022-06-16
出版日期:
2023-02-20
发布日期:
2023-03-24
通讯作者:
* 李安, 男, 1983年生, 副研究员, 研究方向为活动构造和古地震, E-mail: lian@ies.ac.cn。
作者简介:
原浩东, 男, 1997年生, 现为长安大学和中国地震局地质研究所联合培养地质工程专业在读硕士研究生, 研究方向为活动构造与地震地质, E-mail: 18335528494@163.com。
基金资助:
YUAN Hao-dong1),2)(), LI An1),3),*(), HUANG Wei-liang2), HU Zong-kai1),3), ZUO Yu-qi1),3), YANG Xiao-ping1),3)
Received:
2022-04-24
Revised:
2022-06-16
Online:
2023-02-20
Published:
2023-03-24
摘要:
受新生代印度-欧亚板块碰撞的远程效应影响, 西准噶尔地区平行斜列的走滑断裂系统被重新激活。托里断裂作为其中重要的组成部分, 获取其晚第四纪构造变形特征对于认识和理解天山以北区域的构造变形和地壳缩短吸收方式都具有重要意义。文中基于野外调查结果和无人机三维重建技术分析了托里断裂晚第四纪的构造变形特征, 并利用光释光测年方法对托里断裂的地貌面期次进行定年, 进而通过冲沟和阶地陡坎等标志性地貌的位错量和地貌年龄计算托里断裂的晚第四纪活动速率。研究结果表明: 托里断裂由东、 西2支分支断裂构成, 均以左旋水平走滑为主。东支断裂使喀普舍克河T3和T2阶地分别产生了(89±31)m和(39±13)m的水平位错量, 结合T3阶地(52.9±5.1)ka和T2阶地(23.4±1.5)ka的形成年龄, 计算得到其活动速率约为(1.7±0.8)mm/a; 西支断裂使铁斯巴汗河T2阶地产生了(34.0±6.8)m的水平位错量以及喀普舍克河T3阶地上最大为(37.5-4.1/+2.7)m的冲沟水平位错量, 结合T2阶地(18.8±1.3)ka的形成年龄, 计算得到其活动速率为(1.8+0.5/-1.3)mm/a。结合前人对塔城东断裂的研究结果分析认为, 西准噶尔地区的平行左旋走滑断裂系统具有书斜构造模型的特点, 并通过断裂系的平行走滑运动吸收了西准噶尔地区大部分挤压缩短量, 在控制该区域SN向地壳缩短过程中发挥了重要作用。
中图分类号:
原浩东, 李安, 黄伟亮, 胡宗凯, 左玉琦, 杨晓平. 西准噶尔地区托里断裂晚第四纪构造变形[J]. 地震地质, 2023, 45(1): 49-66.
YUAN Hao-dong, LI An, HUANG Wei-liang, HU Zong-kai, ZUO Yu-qi, YANG Xiao-ping. GEOLOGICAL DEFORMATION OF THE TUOLI FAULT IN THE WEST JUNGGAR SINCE THE LATE QUATERNARY[J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 49-66.
图1 天山西准噶尔的构造简图和研究区示意图 a 天山西准噶尔的构造简图, 黑色细线框为整条托里断裂的范围; b 研究区的河流阶地划分和托里断裂的解译结果。BAF 博罗可努-阿其克库都克断裂(准噶尔断裂); DNF 扎莱尔-奈曼断裂; TFF 塔拉斯-费尔干那断裂; ATF 阿尔金断裂; KLF 昆仑断裂; MFT 喜马拉雅山主边界冲断带; RRF 红河断裂; TLF-W 托里断裂西支; TLF-E 托里断裂东支
Fig. 1 Regional geological sketch map of the Tianshan-west Junggar and the study area.
图2 铁斯巴汗水库西侧的阶地位错 a 实测地形坡向图; b、 c T2阶地上陡坎的垂直位错量; d T1阶地上陡坎的垂直位错量; e T1/T2阶地陡坎的左旋位错照片
Fig. 2 Fault dislocation of terraces in the west side of the Tiesibahan reservoir.
编号 | 北纬/(°) | 东经/(°) | 左旋位移量/m | 误差/m |
---|---|---|---|---|
1 | 45.8711 | 83.5360 | 10.0 | -1.2/+1.4 |
2 | 45.8725 | 83.5377 | 16.6 | -0.9/+1.0 |
3 | 45.8763 | 83.5431 | 24.9 | -2.1/+2.0 |
4 | 45.8790 | 83.5474 | 22.5 | -0.9/+0.9 |
5 | 45.8802 | 83.5490 | 12.1 | -1.8/+1.3 |
6 | 45.8831 | 83.5533 | 32.4 | -2.1/+1.5 |
7 | 45.8852 | 83.5563 | 23.3 | -0.7/+0.7 |
8 | 45.8881 | 83.5601 | 37.5 | -4.1/+4.1 |
9 | 45.8897 | 83.5624 | 31.5 | -4.0/+2.9 |
10 | 45.8917 | 83.5650 | 34.7 | -2.0/+2.0 |
11 | 45.8923 | 83.5661 | 18.6 | -0.5/+3.4 |
12 | 45.8934 | 83.5672 | 20.9 | -1.3/+1.1 |
13 | 45.8944 | 83.5684 | 36.7 | -3.9/+1.7 |
14 | 45.8954 | 83.5696 | 12.1 | -2.4/+2.5 |
表1 喀普舍克河T3阶地面上的冲沟水平位错统计表
Table1 Statistic result of the horizontal dislocations of the gullies on the T3 of the Kapusheke River
编号 | 北纬/(°) | 东经/(°) | 左旋位移量/m | 误差/m |
---|---|---|---|---|
1 | 45.8711 | 83.5360 | 10.0 | -1.2/+1.4 |
2 | 45.8725 | 83.5377 | 16.6 | -0.9/+1.0 |
3 | 45.8763 | 83.5431 | 24.9 | -2.1/+2.0 |
4 | 45.8790 | 83.5474 | 22.5 | -0.9/+0.9 |
5 | 45.8802 | 83.5490 | 12.1 | -1.8/+1.3 |
6 | 45.8831 | 83.5533 | 32.4 | -2.1/+1.5 |
7 | 45.8852 | 83.5563 | 23.3 | -0.7/+0.7 |
8 | 45.8881 | 83.5601 | 37.5 | -4.1/+4.1 |
9 | 45.8897 | 83.5624 | 31.5 | -4.0/+2.9 |
10 | 45.8917 | 83.5650 | 34.7 | -2.0/+2.0 |
11 | 45.8923 | 83.5661 | 18.6 | -0.5/+3.4 |
12 | 45.8934 | 83.5672 | 20.9 | -1.3/+1.1 |
13 | 45.8944 | 83.5684 | 36.7 | -3.9/+1.7 |
14 | 45.8954 | 83.5696 | 12.1 | -2.4/+2.5 |
图5 喀普舍克河的阶地位错 a 喀普舍克河的阶地分布; b 河流阶地的照片; c T2阶地的采样位置; d T3阶地的采样位置; e T1阶地的采样位置; f 阶地的横剖面; g 南侧T3阶地上的断层陡坎剖面; h 北侧T3阶地上的断层陡坎剖面
Fig. 5 Fault dislocation on the terrace of the Kapusheke River.
图6 加玛特河的阶地位错 a 加玛特河的阶地分布; b 东支断裂剖面; c 断错T2冲积物的断层剖面; d T2阶地上2条冲沟间残留脊的位错量计算;e T2阶地上最新的断层陡坎剖面
Fig. 6 Fault dislocation on the terrace of the Jiamate River.
野外 编号 | 位置 | 北纬 /(°) | 东经 /(°) | 高程 /m | 埋深 /m | U /μg·g-1 | Th /μg·g-1 | K /% | 含水量 /% | 粒径 /μm | 环境剂量率 /Gy·ka-1 | 等效剂量 /Gy | 年龄 /ka | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TL-3 | 喀普舍克河 | T2 | 45.842 | 83.591 | 1348 | 0.5 | 3.81±0.03 | 10.5±0.06 | 2.04±0.01 | 6.3 | 90~125 | 3.7±0.2 | 86.1±4.5 | 23.4±1.5 |
TL-4 | T3 | 45.846 | 83.597 | 1349 | 0.4 | 7.06±0.16 | 7.06±0.05 | 1.72±0.01 | 2.6 | 90~125 | 4.0±0.2 | 213.0±18.5 | 52.9±5.1 | |
TL-5 | T1 | 45.848 | 83.595 | 1327 | 0.7 | 2.34±0.05 | 7.54±0.15 | 2.85±0.03 | 2.6 | 90~125 | 4.1±0.2 | 71.3±3.1 | 17.5±1.1 | |
TL-6 | 加玛特河 | T2砾石层 | 45.750 | 83.529 | 1459 | 6.5 | 2.41±0.06 | 7.88±0.15 | 3.4±0.01 | 1.2 | 90~125 | 4.6±0.2 | 261.4±5.4 | 57.0±2.9 |
TL-7 | T2粗砂层 | 45.750 | 83.529 | 1459 | 1.8 | 6.69±0.05 | 11±0.23 | 2.03±0.02 | 5.8 | 90~125 | 4.3±0.2 | 99.3±3.4 | 23.1±1.2 | |
TL-8 | 坎前堆积 | 45.750 | 83.529 | 1459 | 0.5 | 2.33±0.05 | 9.91±0.06 | 2.79±0.02 | 2.8 | 90~125 | 4.2±0.2 | 33.1±1.8 | 7.9±0.5 | |
TL-11 | 铁斯巴汗探槽 | 崩积楔 | 45.748 | 83.491 | 1278 | 0.7 | 2.05±0.05 | 7.42±0.06 | 1.64±0.01 | 1.1 | 90~125 | 2.9±0.1 | 64.1±3.0 | 22.4±1.4 |
TL-12 | 断塞塘 | 45.748 | 83.491 | 1278 | 0.7 | 1.63±0.03 | 5.53±0.12 | 1.64±0.01 | 3.2 | 90~125 | 2.6±0.1 | 44.2±2.7 | 17.2±1.3 | |
TL-13 | T2 | 45.748 | 83.491 | 1278 | 1.0 | 2.29±0.03 | 7.64±0.05 | 1.77±0.01 | 1.5 | 90~125 | 3.0±0.1 | 57.0±3.1 | 18.8±1.3 | |
TL-14 | 崩积楔 | 45.748 | 83.491 | 1278 | 0.7 | 1.89±0.02 | 7.07±0.06 | 1.81±0.01 | 3.0 | 90~125 | 2.9±0.1 | 56.0±4.2 | 19.3±1.6 |
表2 托里断裂的样品结果
Table2 Dating results of the Tuoli Fault
野外 编号 | 位置 | 北纬 /(°) | 东经 /(°) | 高程 /m | 埋深 /m | U /μg·g-1 | Th /μg·g-1 | K /% | 含水量 /% | 粒径 /μm | 环境剂量率 /Gy·ka-1 | 等效剂量 /Gy | 年龄 /ka | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TL-3 | 喀普舍克河 | T2 | 45.842 | 83.591 | 1348 | 0.5 | 3.81±0.03 | 10.5±0.06 | 2.04±0.01 | 6.3 | 90~125 | 3.7±0.2 | 86.1±4.5 | 23.4±1.5 |
TL-4 | T3 | 45.846 | 83.597 | 1349 | 0.4 | 7.06±0.16 | 7.06±0.05 | 1.72±0.01 | 2.6 | 90~125 | 4.0±0.2 | 213.0±18.5 | 52.9±5.1 | |
TL-5 | T1 | 45.848 | 83.595 | 1327 | 0.7 | 2.34±0.05 | 7.54±0.15 | 2.85±0.03 | 2.6 | 90~125 | 4.1±0.2 | 71.3±3.1 | 17.5±1.1 | |
TL-6 | 加玛特河 | T2砾石层 | 45.750 | 83.529 | 1459 | 6.5 | 2.41±0.06 | 7.88±0.15 | 3.4±0.01 | 1.2 | 90~125 | 4.6±0.2 | 261.4±5.4 | 57.0±2.9 |
TL-7 | T2粗砂层 | 45.750 | 83.529 | 1459 | 1.8 | 6.69±0.05 | 11±0.23 | 2.03±0.02 | 5.8 | 90~125 | 4.3±0.2 | 99.3±3.4 | 23.1±1.2 | |
TL-8 | 坎前堆积 | 45.750 | 83.529 | 1459 | 0.5 | 2.33±0.05 | 9.91±0.06 | 2.79±0.02 | 2.8 | 90~125 | 4.2±0.2 | 33.1±1.8 | 7.9±0.5 | |
TL-11 | 铁斯巴汗探槽 | 崩积楔 | 45.748 | 83.491 | 1278 | 0.7 | 2.05±0.05 | 7.42±0.06 | 1.64±0.01 | 1.1 | 90~125 | 2.9±0.1 | 64.1±3.0 | 22.4±1.4 |
TL-12 | 断塞塘 | 45.748 | 83.491 | 1278 | 0.7 | 1.63±0.03 | 5.53±0.12 | 1.64±0.01 | 3.2 | 90~125 | 2.6±0.1 | 44.2±2.7 | 17.2±1.3 | |
TL-13 | T2 | 45.748 | 83.491 | 1278 | 1.0 | 2.29±0.03 | 7.64±0.05 | 1.77±0.01 | 1.5 | 90~125 | 3.0±0.1 | 57.0±3.1 | 18.8±1.3 | |
TL-14 | 崩积楔 | 45.748 | 83.491 | 1278 | 0.7 | 1.89±0.02 | 7.07±0.06 | 1.81±0.01 | 3.0 | 90~125 | 2.9±0.1 | 56.0±4.2 | 19.3±1.6 |
断裂 | 位错编号 | 位错来源 | 位错量/m | 样品编号 | 样品年龄/ka | 走滑速率/mm·a-1 |
---|---|---|---|---|---|---|
西支 | T2t | 铁斯巴汗T2阶地坎位错 | 34.0±6.8 | TL-14 | 19.3±1.6 | 1.8±0.5 |
T2tmin | 铁斯巴汗T2冲沟最大位错 | 25.4±7.0 | TL-12 | 17.2±1.3 | 1.5±0.4 | |
T3kmin | 喀普舍克T3冲沟最大位错 | 37.5±4.1 | TL-4 | 52.9±5.1 | 0.7±0.2 | |
东支 | T3k | 喀普舍克T3阶地坎位错 | 89±31 | TL-4 | 52.9±5.1 | 1.7±0.8 |
T2k | 喀普舍克T2阶地坎位错 | 39±13 | TL-3 | 23.4±1.5 | 1.7±0.8 | |
T2jmin | 加玛特T2残留脊位错 | 36±5 | TL-7 | 23.1±1.2 | 1.6±0.4 |
表3 托里断裂的左旋走滑速率计算
Table3 Calculation of sinistral slip rate of the Tuoli Fault
断裂 | 位错编号 | 位错来源 | 位错量/m | 样品编号 | 样品年龄/ka | 走滑速率/mm·a-1 |
---|---|---|---|---|---|---|
西支 | T2t | 铁斯巴汗T2阶地坎位错 | 34.0±6.8 | TL-14 | 19.3±1.6 | 1.8±0.5 |
T2tmin | 铁斯巴汗T2冲沟最大位错 | 25.4±7.0 | TL-12 | 17.2±1.3 | 1.5±0.4 | |
T3kmin | 喀普舍克T3冲沟最大位错 | 37.5±4.1 | TL-4 | 52.9±5.1 | 0.7±0.2 | |
东支 | T3k | 喀普舍克T3阶地坎位错 | 89±31 | TL-4 | 52.9±5.1 | 1.7±0.8 |
T2k | 喀普舍克T2阶地坎位错 | 39±13 | TL-3 | 23.4±1.5 | 1.7±0.8 | |
T2jmin | 加玛特T2残留脊位错 | 36±5 | TL-7 | 23.1±1.2 | 1.6±0.4 |
图7 托里断裂的左旋走滑速率 a 西支断裂的左旋走滑速率; b 东支断裂的左旋走滑速率。T2t 铁斯巴汗T2阶地陡坎位错; T2tmin铁斯巴汗T2阶地冲沟位错; T3kmin喀普舍克河T3阶地冲沟位错; T3k 喀普舍克河T3阶地陡坎位错; T2k 喀普 舍克河T2阶地陡坎位错; T2jmin加玛特河T2阶地残留脊位错
Fig. 7 Sinistral slip rate of the Tuoli Fault.
图8 西准噶尔地区的区域构造变形 a 西准噶尔地区的断裂展布特征; b 西准噶尔的书斜构造推测模型。KSF 喀什河断裂; BAF 博阿断裂;NTF 北天山山前断裂; DF 达尔布特断裂; TLF 托里断裂; ETF 塔城东断裂; STF 塔尔巴哈台山南缘断裂
Fig. 8 Regional deformation of the west Junggar area.
[1] | 陈熠, 方小敏, 宋春晖, 等. 2012. 准噶尔盆地南缘新生代沉积物碎屑锆石记录的天山隆升剥蚀过程[J]. 地学前缘, 19(5): 225233. |
CHEN Yi, FANG Xiao-min, SONG Chun-hui, et al. 2012. The uplift and erosion of the Tianshan Mountains recorded by detrital zircon geochronology from the Cenozoic sediments in the southern Junggar Basin[J]. Earth Science Frontiers, 19(5): 225233. (in Chinese) | |
[2] | 高睿, 肖龙, 王国灿, 等. 2013. 西准噶尔晚古生代岩浆活动和构造背景[J]. 岩石学报, 29(10): 34133434. |
GAO Rui, XIAO Long, WANG Guo-can, et al. 2013. Paleozoic magmatism and tectonic setting in West Junggar[J]. Acta Petrologica Sinica, 29(10): 34133434. (in Chinese) | |
[3] | 焦光磊, 李永军, 易善鑫, 等. 2013. 西准噶尔由后碰撞向板内体制转变的地质记录: 来自克西克A型花岗岩的证据[J]. 西北地质, 46(3): 3949. |
JIAO Guang-lei, LI Yong-jun, YI Shan-xin, et al. 2013. The geologic record of the post-collision shift to intraplate system in West Junggar: Evidence from Kexike A-type granite[J]. Northwestern Geology, 46(3): 3949. (in Chinese) | |
[4] |
李安, 冉勇康, 刘华国, 等. 2016. 西南天山柯坪推覆系西段全新世构造活动特征和古地震[J]. 地球科学进展, 31(4): 377390.
DOI |
LI An, RAN Yong-kang, LIU Hua-guo, et al. 2016. Active characteristics and paleoearthquakes in the west Kalpin nappe since the Holocene, SW Tianshan[J]. Advances in Earth Science, 31(4): 377390. (in Chinese)
DOI |
|
[5] |
李安, 杨晓平, 黄伟亮, 等. 2012. 焉耆盆地北缘和静逆断裂-褶皱带第四纪变形[J]. 地震地质, 34(2): 240253. doi: 10.3969/j.issn.0253-4967.2012.02.004.
DOI |
LI An, YANG Xiao-ping, HUANG Wei-liang, et al. 2012. Quaternary deformation of the Hejing thrust-fold belt on northern margin of the Yanqi Basin, southern Tianshan[J]. Seismology and Geology, 34(2): 240253. (in Chinese) | |
[6] | 李传友. 2005. 青藏高原东北部几条主要断裂带的定量研究[D]. 北京: 中国地震局地质研究所. |
LI Chuan-you. 2005. Quantitative studies on major active fault zones in northeastern Qinghai-Tibet Plateau[D]. Institute of Geology, China Earthquake Administration, Beijing. (in Chinese) | |
[7] | 李理, 赵利, 钟大赉. 2013. 新生代大陆板内伸展盆-山耦合与大陆碰撞效应: 以渤海湾盆地济阳坳陷、 周缘隆起及边界断裂构造演化为例[J]. 地质科学, 48(2): 406418. |
LI Li, ZHAO Li, ZHONG Da-lai. 2013. Cenozeic continental intraplate extension basin-mountain coupling and continental collision: Evidences from Bohai Bay Basin, its peripheral mountain and Tancheng-Lujiang Fault[J]. Chinese Journal of Geology, 48(2): 406418. (in Chinese) | |
[8] | 马晓峰, 王琪, 史基安, 等. 2012. 准噶尔盆地陆西地区石炭二叠系火山岩岩性岩相特征及其对储层的控制[J]. 特种油气藏, 19(1): 5457. |
MA Xiao-feng, WANG Qi, SHI Ji-an, et al. 2012. Lithologic and lithofacies characteristics of the Carboniferous-Permian volcanic rocks and their control actions on the reservoirs in Luxi area, Junggar Basin[J]. Special Oil & Gas Reservoirs, 19(1): 5457. (in Chinese) | |
[9] | 马宗晋, 曲国胜, 李涛, 等. 2008. 准噶尔盆地盆山构造耦合与分段性[J]. 新疆石油地质, 29(3): 271277. |
MA Zong-jin, QU Guo-sheng, LI Tao, et al. 2008. Tectonic coupling and segmentation of marginal structural belt in Junggar Basin[J]. Xinjiang Petroleum Geology, 29(3): 271277. (in Chinese) | |
[10] | 牛改红, 李孝泽, 王兆云, 等. 2021. 8Ma以来准噶尔盆地西缘白杨河冲-洪积扇ZK1钻孔剖面沉积环境演变[J]. 第四纪研究, 41(6): 15841595. |
NIU Gai-hong, LI Xiao-ze, WANG Zhao-yun, et al. 2021. Depositional environment evolution of ZK1 drilling section since 8Ma in the Baiyanghe alluvial fan on the west margin of Junggar Basin, NW China[J]. Quaternary Sciences, 41(6): 15841595. (in Chinese) | |
[11] | 潘家伟, 李海兵, van der Woerd J, 等. 2009. 青藏高原西北部帕米尔东北缘构造地貌与活动构造研究[J]. 第四纪研究, 29(3): 586598. |
PAN Jia-wei, LI Hai-bing, van der Woerd J, et al. 2009. Tectonic geomorphology and active tectonics in northeastern Pamir, northwest margin of Qinhai-Tibet plateau[J]. Quaternary Sciences, 29(3): 586598. (in Chinese) | |
[12] | 齐进英. 1993. 新疆准噶尔脉岩群地质及成因[J]. 岩石学报, 9(3): 287299. |
QI Jin-ying. 1993. Geology and genesis of vein rock group in western Zhunggar, Xinjiang[J]. Acta Petrologica Sinica, 9(3): 287299. (in Chinese) | |
[13] | 冉勇康, 杨晓平, 程建武, 等. 2006. 西南天山柯坪推覆构造柯坪塔格山前逆断裂东段晚第四纪的古地震[J]. 地震地质, 28(2): 245257. |
RAN Yong-kang, YANG Xiao-ping, CHENG Jian-wu, et al. 2006. Paleo-earthquakes along the east section of the range front of KalpinTag during late Quaternary in Kalpin structure system, the southwest Tianshan Mountains[J]. Seismology and Geology, 28(2): 245257. (in Chinese) | |
[14] | 施炜, 刘源, 刘洋, 等. 2013. 青藏高原东北缘海原断裂带新生代构造演化[J]. 地学前缘, 20(4): 117. |
SHI Wei, LIU Yuan, LIU Yang, et al. 2013. Cenozoic evolution of the Haiyuan fault zone in the northeast margin of the Tibetan plateau[J]. Earth Science Frontiers, 20(4): 117. (in Chinese) | |
[15] | 宋彪, 李锦轶, 张进, 等. 2011. 西准噶尔托里地区塔尔根二长花岗岩锆石U-Pb年龄托里断裂左行走滑运动开始的时间约束[J]. 地质通报, 30(1): 1925. |
SONG Biao, LI Jin-yi, ZHANG Jin, et al. 2011. Zircon SHRIMP U-Pb age of Targen monzogranite in western Junggar, Xinjiang, China: Initial time of left-lateral slip of the Tuoli fault[J]. Geological Bulletin of China, 30(1): 1925. (in Chinese) | |
[16] |
王虎, 冉勇康, 陈立春, 等. 2018. 安宁河断裂带南段滑动速率估计[J]. 地震地质, 40(5): 967979. doi: 10.3969/j.issn.0253-4967.2018.05.002.
DOI |
WANG Hu, RAN Yong-kang, CHEN Li-chun, et al. 2018. Determination of slip rate on the southern segment of the Anninghe Fault[J]. Seismology and Geology, 40(5): 967979. (in Chinese) | |
[17] | 汪一鹏, 沈军. 2000. 天山北麓活动构造基本特征[J]. 新疆地质, 18(3): 203210. |
WANG Yi-peng, SHEN Jun. 2000. Basic features of active structures at the northern foothill of Tianshan Mountains, China[J]. Xinjiang Geology, 18(3): 203210. (in Chinese) | |
[18] |
吴传勇, 阿里木江, 戴训也, 等. 2014. 西南天山迈丹断裂东段晚第四纪活动的发现及构造意义[J]. 地震地质, 36(4): 976990. doi: 10.3969/j.issn.0253-4967.2014.04.004.
DOI |
WU Chuan-yong, Alimujiang, DAI Xun-ye, et al. 2014. Discovery of the late-Quaternary activity along the eastern segment of Maidan Fault in southwest Tianshan and its tectonic implication[J]. Seismology and Geology, 36(4): 976990. (in Chinese) | |
[19] | 许志琴, 王勤, 李忠海, 等. 2016. 印度-亚洲碰撞: 从挤压到走滑的构造转换[J]. 地质学报, 90(1): 123. |
XU Zhi-qin, WANG Qin, LI Zhong-hai, et al. 2016. Indo-Asian collision: Tectonic transition from compression to strike slip[J]. Acta Geologica Sinica, 90(1): 123. (in Chinese) | |
[20] | 杨晓平, 邓起东, 张培震, 等. 2008. 天山山前主要推覆构造区的地壳缩短[J]. 地震地质, 30(1): 111131. |
YANG Xiao-ping, DENG Qi-dong, ZHANG Pei-zhen, et al. 2008. Crustal shortening of major nappe structures on the front margnis of the Tianshan[J]. Seismology and Geology, 30(1): 111131. (in Chinese) | |
[21] |
姚远, 李帅, 黄帅堂, 等. 2019. 西准噶尔冬别列克断裂晚第四纪以来的阶地位错与滑动速率[J]. 地震地质, 41(4): 803820. doi: 10.3969/j.issn.0253-4967.2019.04.001.
DOI |
YAO Yuan, LI Shuai, HUANG Shuai-tang, et al. 2019. Terrace deformation and slip rates of the Dongbielieke Fault in western Junggar Basin since the late Quaternary[J]. Seismology and Geology, 41(4): 803820. (in Chinese) | |
[22] |
姚远, 宋和平, 陈建波, 等. 2018. 新疆天山南部北轮台断裂带晚第四纪活动速率[J]. 地震地质, 40(1): 7186. doi: 10.3969/j.issn.0253-4967.2018.01.006.
DOI |
YAO Yuan, SONG He-ping, CHEN Jian-bo, et al. 2018. Late Quaternary crustal shortening rate of the Beiluntai Fault in southern Tianshan, Xinjaing[J]. Seismology and Geology, 40(1): 7186. (in Chinese) | |
[23] | 张会平, 张培震, 郑德文, 等. 2012. 祁连山构造地貌特征: 青藏高原东北缘晚新生代构造变形和地貌演化过程的启示[J]. 第四纪研究, 32(5): 907920. |
ZHANG Hui-ping, ZHANG Pei-zhen, ZHENG De-wen, et al. 2012. Tectonic geomorphology of the Qilian Shan: Insights into the Late Cenozoic landscape evolution and deformation in the northeastern Tibetan plateau[J]. Quaternary Sciences, 32(5): 907920. (in Chinese) | |
[24] | 张培震, 邓起东, 杨晓平, 等. 1996. 天山的晚新生代构造变形及其地球动力学问题[J]. 中国地震, 12(2): 127140. |
ZHANG Pei-zhen, DENG Qi-dong, YANG Xiao-ping, et al. 1996. Late Cenozoic tectonic deformation and mechanism along the Tianshan Mountains, northwestern China[J]. Earthquake Research in China, 12(2): 127140. (in Chinese) | |
[25] | 张培震, 李传友, 毛凤英. 2008. 河流阶地演化与走滑断裂滑动速率[J]. 地震地质, 30(1): 4457. |
ZHANG Pei-zhen, LI Chuan-you, MAO Feng-ying. 2008. Strath terrace formation and strike slip faulting[J]. Seismology and geology, 30(1): 4457. (in Chinese) | |
[26] | 张越迁, 汪新, 刘继山, 等. 2011. 准噶尔盆地西北缘乌夏走滑构造及油气勘探意义[J]. 新疆石油地质, 32(5): 447450. |
ZHANG Yue-qian, WANG Xin, LIU Ji-shan, et al. 2011. Wuerhe-Xiazijie strike-slip structure and petroleum exploration significance in northwestern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 32(5): 447450. (in Chinese) | |
[27] |
Axen G J. 1988. The geometry of planar domino-style normal faults above a dipping basal detachment[J]. Journal of Structural Geology, 10(4): 405411.
DOI URL |
[28] |
Cowgill E. 2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China[J]. Earth and Planetary Science Letters, 254(3): 239255.
DOI URL |
[29] |
Ding W C, Li T D, Chen X H, et al. 2019. Intra-continental deformation and tectonic evolution of the west Junggar orogenic belt, Central Asia: Evidence from remote sensing and structural geological analyses[J]. Geoscience Frontiers, 11(2): 651663.
DOI URL |
[30] | Molnar P H, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision[J]. Nature, 189(4201): 419426. |
[31] |
Nixon C W, Sanderson D J, Bull J M. 2011. Deformation with a strike-slip fault network at Westward Ho!, Devon U K: Domino vs conjugate faulting[J]. Journal of Structural Geology, 33(5): 833843.
DOI URL |
[32] |
Nur A, Ron H, Scotti O. 1986. Fault mechanics and the kinematics of block rotations[J]. Geology, 14(9): 746749.
DOI URL |
[33] |
Tapponnier P, Peltzer G, Dain A Y L, et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611616.
DOI URL |
[34] | Yang G, Wang X, Li B, et al. 2011. Transpression and wrench faults of northwestern margin of Junggar Basin[J]. Chinese Journal of Geology, 46(3): 696708. |
[35] |
Yao Y, Li S, Huang S T, et al. 2020. Late Quaternary activity characteristics of the strike-slip Dongbielieke Fault in West Junggar, China[J]. Arabian Journal of Geosciences, 13(11): 115.
DOI |
[36] | Yu J X, Walker R T, Rhodes E J, et al. 2021. East Tacheng(Qoqek)fault zone: Late Quaternary tectonics and slip rate of a left-lateral strike-slip fault zone north of the Tian Shan[J]. Tectonics, 40(2): e2020TC006377. |
[37] |
Zhang P, Wang G, Shen T, et al. 2021. Paleozoic convergence processes in the southwestern central Asian orogenic belt: Insights from U-Pb dating of detrital zircons from West Junggar, northwestern China[J]. Geoscience Frontiers, 12(2): 531548.
DOI URL |
[38] | Zhao R, Li J, Shi S, et al. 1997. Structural activity of middle Daerbute Fault[J]. Inland Earthquake, 11(4): 295301. |
[1] | 刘庆, 刘韶, 张世民. 大凉山断裂带中段越西断裂晚第四纪古地震[J]. 地震地质, 2023, 45(2): 321-337. |
[2] | 左玉琦, 杨海波, 杨晓平, 詹艳, 李安, 孙翔宇, 胡宗凯. 阿拉善地块南缘北大山断裂的晚第四纪构造活动证据[J]. 地震地质, 2023, 45(2): 355-376. |
[3] | 杨晨艺, 李晓妮, 冯希杰, 黄引弟, 裴跟弟. 秦岭北缘断裂带的重要分支——桃川-户县断层的浅部结构与第四纪活动性[J]. 地震地质, 2023, 45(2): 464-483. |
[4] | 张伟恒, 陈杰, 李涛, 邸宁, 姚远. 龙门山前陆冲断带南段三苏场背斜晚第四纪变形速率[J]. 地震地质, 2022, 44(6): 1351-1364. |
[5] | 冯晶晶, 赵勇伟, 李霓, 陈正全, 王丽竹, 刘永顺, 聂保锋, 张学斌. 琼北晚第四纪火山锥体形貌与喷发机制[J]. 地震地质, 2022, 44(5): 1107-1127. |
[6] | 沈军, 戴训也, 肖淳, 焦轩凯, 白其乐格尔, 邓梅, 刘泽众, 夏方华, 刘玉, 刘明. 夏垫西断裂的晚第四纪活动性[J]. 地震地质, 2022, 44(4): 909-924. |
[7] | 徐伟, 刘志成, 王继, 高战武, 尹金辉. 西藏阿里地区喀喇昆仑断裂断错地貌及最近强震活动时代的初步研究[J]. 地震地质, 2022, 44(4): 925-943. |
[8] | 张驰, 李智敏, 任治坤, 刘金瑞, 张志亮, 武登云. 日月山断裂南段晚第四纪活动特征[J]. 地震地质, 2022, 44(1): 1-19. |
[9] | 常昊, 常祖峰, 刘昌伟. 金沙江断裂带活动与大型滑坡群的关系研究:以金沙江拿荣—绒学段为例[J]. 地震地质, 2021, 43(6): 1435-1458. |
[10] | 杨晨艺, 李晓妮, 冯希杰, 朱琳, 李苗, 张恩会. 渭河盆地北缘口镇-关山断层的晚第四纪—现今的活动性[J]. 地震地质, 2021, 43(3): 504-520. |
[11] | 姚生海, 盖海龙, 殷翔, 刘炜, 张加庆, 袁建新. 柴达木盆地北缘断裂(锡铁山段)的构造地貌特征与晚第四纪活动速率[J]. 地震地质, 2020, 42(6): 1385-1400. |
[12] | 梁明剑, 杨耀, 杜方, 宫悦, 孙玮, 赵敏, 何强. 青海达日断裂中段晚第四纪活动性与1947年M73/4地震地表破裂带再研究[J]. 地震地质, 2020, 42(3): 703-714. |
[13] | 梁明剑, 陈立春, 冉勇康, 李彦宝, 王栋, 高帅坡, 韩明明, 曾蒂. 鲜水河断裂带雅拉河段晚第四纪活动性[J]. 地震地质, 2020, 42(2): 513-525. |
[14] | 李彦宝, 陈立春, 王虎, 曾蒂, 刘成龙. 雅鲁藏布江断裂带昂仁段晚第四纪活动证据[J]. 地震地质, 2019, 41(5): 1091-1104. |
[15] | 姚远, 李帅, 黄帅堂, 贾海梁. 西准噶尔冬别列克断裂晚第四纪以来的阶地位错与滑动速率[J]. 地震地质, 2019, 41(4): 803-820. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||