地震地质 ›› 2022, Vol. 44 ›› Issue (4): 944-960.DOI: 10.3969/j.issn.0253-4967.2022.04.008
林旭1,2)(), 刘海金3), 刘静4), 吴中海5), 李兆宁6), 陈济鑫1), 李玲玲1), 胡程伟1)
收稿日期:
2021-06-20
修回日期:
2021-12-01
出版日期:
2022-08-20
发布日期:
2022-09-23
作者简介:
林旭, 男, 1984年生, 2016年于中国科学院大学地质与地球物理研究所获第四纪地质学专业理学博士学位, 主要研究方向为青藏高原新生代构造演化, 黄河和长江的形成与发育过程, E-mail: hanwuji-life@163.com。
基金资助:
LIN Xu1,2)(), LIU Hai-jin3), LIU-ZENG Jing4), WU Zhong-hai5), LI Zhao-ning6), CHEN Ji-xin1), LI Ling-ling1), HU Cheng-wei1)
Received:
2021-06-20
Revised:
2021-12-01
Online:
2022-08-20
Published:
2022-09-23
摘要:
示踪黄河流域的泥沙来源, 对于认识和理解青藏高原隆升剥蚀和西太平洋边缘海沉积之间的耦合关系至关重要。钾长石是河流沉积物中常见的造岩矿物之一, 其铅(Pb)同位素比值在应用于大河物源示踪研究时效果良好, 但这一研究在黄河流域还未开展。文中利用激光剥蚀电感耦合等离子质谱仪(LA-MC-ICP-MS)对黄河流域的15件样品进行分析, 获得了967颗钾长石的原位Pb同位素结果。206Pb/204Pb和 208Pb/204Pb比值二维散点图和多维判别图(MDS)结果表明, 黄河玛多-同德段、 大夏河和湟水的钾长石Pb同位素组成与黄河兰州段存在明显差异; 黄河兰州段的钾长石Pb同位素组成与黄河巴彦淖尔段一致, 二者受相似的风成物源区的影响; 黄河晋陕峡谷段、 汾河的钾长石主要来自黄土高原; 渭河的钾长石主要来自秦岭。黄河开封和利津段的钾长石Pb同位素组成一致, 都与黄河上游和华北板块明显不同, 但与黄河中游相似。黄土高原对黄河中、 下游的钾长石来源起主导作用。
中图分类号:
林旭, 刘海金, 刘静, 吴中海, 李兆宁, 陈济鑫, 李玲玲, 胡程伟. 黄河流域碎屑钾长石Pb同位素物源示踪[J]. 地震地质, 2022, 44(4): 944-960.
LIN Xu, LIU Hai-jin, LIU-ZENG Jing, WU Zhong-hai, LI Zhao-ning, CHEN Ji-xin, LI Ling-ling, HU Cheng-wei. PROVENANCE TRACING OF PB ISOTOPES OF FLUVIAL DETRITAL K-feldspar FROM THE YELLOW RIVER BASIN[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(4): 944-960.
图2 黄河干流主要水文站的输沙量柱状图(中华人民共和国水利部, 2019)
Fig. 2 Histogram of sediment transport at major hydrological stations in the Yellow River trunk stream (Ministry of Water Resources of the People’s Republic of China, 2019).
样品性质 | 采样点 | 东经 | 北纬 | 样品分析数量/颗 | 数据来源 |
---|---|---|---|---|---|
河砂 | 玛多(黄河) | 98°10'17″ | 34°53'16″ | 69 | 本研究 |
河砂 | 玛曲(黄河) | 102°4'48″ | 33°57'28″ | 63 | |
河砂 | 同德(黄河) | 100°12'42″ | 35°21'24″ | 65 | |
河砂 | 临夏(大夏河) | 103°15'28″ | 35°37'25″ | 65 | |
河砂 | 河嘴(湟水) | 103°20'49″ | 36°7'12″ | 65 | |
河砂 | 兰州(黄河) | 103°36'32″ | 36°8'24″ | 65 | |
河砂 | 巴彦(黄河) | 107°22'8″ | 40°40'15″ | 65 | |
河砂 | 河曲(黄河) | 111°10'58″ | 39°20'2″ | 63 | |
河砂 | 韩城(黄河) | 110°35'52″ | 35°39'25″ | 63 | |
河砂 | 河津(汾河) | 110°51'57″ | 35°33'25″ | 65 | |
河砂 | 渭南(渭河) | 109°57'28″ | 34°37'51″ | 65 | |
河砂 | 巩义(伊洛河) | 112°55'18″ | 34°42'3″ | 62 | |
河砂 | 开封(黄河) | 114°15'21″ | 34°53'45″ | 62 | |
河砂 | 利津(黄河) | 118°3'21″ | 37°20'38″ | 65 | |
砂岩 | 河曲 | 111°24'28″ | 40°1'55″ | 65 | |
沙漠砂 | 腾格里沙漠 | 104°58'12″ | 37°27'39″ | 65 | 林旭未发表数据 |
沙漠砂 | 毛乌素沙漠 | 109°41'45″ | 38°23'6″ | 65 | |
基岩 | 秦岭(B2-2) | 48 | 张理刚, | ||
基岩 | 华北(A1-2) | 27 | |||
基岩 | 华北(A2) | 35 | |||
基岩 | 华北(A3-2) | 23 |
表1 样品采集信息
Table 1 Collected samples information
样品性质 | 采样点 | 东经 | 北纬 | 样品分析数量/颗 | 数据来源 |
---|---|---|---|---|---|
河砂 | 玛多(黄河) | 98°10'17″ | 34°53'16″ | 69 | 本研究 |
河砂 | 玛曲(黄河) | 102°4'48″ | 33°57'28″ | 63 | |
河砂 | 同德(黄河) | 100°12'42″ | 35°21'24″ | 65 | |
河砂 | 临夏(大夏河) | 103°15'28″ | 35°37'25″ | 65 | |
河砂 | 河嘴(湟水) | 103°20'49″ | 36°7'12″ | 65 | |
河砂 | 兰州(黄河) | 103°36'32″ | 36°8'24″ | 65 | |
河砂 | 巴彦(黄河) | 107°22'8″ | 40°40'15″ | 65 | |
河砂 | 河曲(黄河) | 111°10'58″ | 39°20'2″ | 63 | |
河砂 | 韩城(黄河) | 110°35'52″ | 35°39'25″ | 63 | |
河砂 | 河津(汾河) | 110°51'57″ | 35°33'25″ | 65 | |
河砂 | 渭南(渭河) | 109°57'28″ | 34°37'51″ | 65 | |
河砂 | 巩义(伊洛河) | 112°55'18″ | 34°42'3″ | 62 | |
河砂 | 开封(黄河) | 114°15'21″ | 34°53'45″ | 62 | |
河砂 | 利津(黄河) | 118°3'21″ | 37°20'38″ | 65 | |
砂岩 | 河曲 | 111°24'28″ | 40°1'55″ | 65 | |
沙漠砂 | 腾格里沙漠 | 104°58'12″ | 37°27'39″ | 65 | 林旭未发表数据 |
沙漠砂 | 毛乌素沙漠 | 109°41'45″ | 38°23'6″ | 65 | |
基岩 | 秦岭(B2-2) | 48 | 张理刚, | ||
基岩 | 华北(A1-2) | 27 | |||
基岩 | 华北(A2) | 35 | |||
基岩 | 华北(A3-2) | 23 |
图5 黄河流域碎屑钾长石Pb同位素组成的散点图 a-c 钾长石206Pb/204Pb和207Pb/204Pb比值散点图; d-f 钾长石206Pb/204Pb和208Pb/204 比值散点图
Fig. 5 Scatter plot of Pb isotopic compositions of clastic K-feldspar from the Yellow River Basin.
图6 黄河流域碎屑钾长石Pb同位素组成散点图 a-f 钾长石206Pb/204Pb和208Pb/204Pb比值散点图
Fig. 6 Scatter plot of Pb isotopic composition of clastic K-feldspar in the Yellow River Basin.
图7 黄河流域碎屑钾长石Pb同位素多维标度图和重矿物组成图 a 钾长石Pb同位素多维标度图, 距离1和距离2代表样本间距离的无量纲KS单位(0<KS<1),实线表示最近距离, 虚线表示第2近距离。b 黄河不同河段重矿物比较。兰州及其上游(兰州以上)的黄河数据来自文献(Nie et al., 2015), 兰州-河口的黄河数据来自文献(Pan et al., 2013), 黄河中、 下游数据来自文献(王中波等, 2010)。形成A、 B、 C 3个区域
Fig. 7 Multi-dimensional scaling map of detrital K-feldspar Pb isotopes and heavy mineral composition map from the Yellow River drainage basin.
[1] | 陈垚. 2020. 黄河泥沙沉积物演化特征及物源示踪[D]. 西安: 长安大学. |
CHEN Yao. 2020. Spatial evolution characteristics of the Yellow River sediments and the significance of provenance tracing[D]. Chang 'an University, Xi 'an. (in Chinese) | |
[2] | 李维东, 赵希涛, 杨艳, 等. 2020. 黄河河套盆地段阶地砾石层的形成时代和物源分析[J]. 地球学报, 41(4): 515-524. |
LI Wei-dong, ZHAO Xi-tao, YANG Yan, et al. 2020. Formation age and provenance analysis of the gravel layer in the Yellow River terraces of the Hetao Basin[J]. Acta Geoscientica Sinica, 41(4): 515-524. (in Chinese) | |
[3] | 李智佩. 2006. 中国北方荒漠化形成发展的地质环境研究[D]. 西安: 西北大学. |
LI Zhi-pei. 2006. Researches on geological environment of the formation and development of desertification in northern China[D]. Northwestern University, Xi'an. (in Chinese) | |
[4] | 林晓彤, 李巍然, 时振波. 2003. 黄河物源碎屑沉积物的重矿物特征[J]. 海洋地质与第四纪地质, 23(3): 17-21. |
LIN Xiao-tong, LI Wei-ran, SHI Zhen-bo. 2003. Characteristics of mineralogy in the clastic sediments from the Yellow River provenance, China[J]. Marine Geology and Quaternary Geology, 23(3): 17-21. (in Chinese) | |
[5] | 林旭. 2011. 利用碎屑钾长石普通Pb同位素重建古嘉陵江、 古长江自中新世以来的流向[D]. 武汉: 中国地质大学. |
LIN Xu. 2011. Reconstructing the flow direction of the ancient Jialing River and Yangtze River since Miocene using common Pb isotopes of detrital K-feldspar[D]. China University of Geosciences, Wuhan. (in Chinese) | |
[6] | 林旭, 李玲玲, 刘海金, 等. 2022. 黄河上游物质在新近纪未流入晋陕峡谷[J]. 古地理学报, 24(3): 568-582. |
LIN Xu, LI Ling-ling, LIU Hai-jin, et al. 2022. Sediments from the upper reaches of Yellow River did not enter into Shanxi-Shaanxi Gorge in the Neogene[J]. Journal of Palaeogeography, 24(3): 568-582. (in Chinese) | |
[7] | 林旭, 刘静, 吴中海, 等. 2020a. 中国北部陆架海碎屑锆石U-Pb年龄和钾长石主微量元素物源示踪研究[J]. 地质学报, 94(10): 3024-3035. |
LIN Xu, LIU Jing, WU Zhong-hai, et al. 2020a. Detrital zircon U-Pb ages and K-feldspar main and trace elements provenance studying from fluvial to marine sediments in northern China[J]. Acta Geologica Sinica, 94(10): 3024-3035. (in Chinese) | |
[8] | 林旭, 刘静, 吴中海, 等. 2021a. 渤海钻孔物源示踪和河流沉积物扩散研究: 碎屑锆石U-Pb年龄和磷灰石原位地球化学元素双重约束[J]. 地质力学学报, 27(2): 304-316. |
LIN Xu, LIU Jing, WU Zhong-hai, et al. 2021a. Study on borehole provenance tracing and fluvial sediment diffusion in the Bohai Sea: Double constraints from detrital zircon U-Pb age and in-situ geochemical element of apatite grains[J]. Journal of Geomechanics, 27(2): 304-316. (in Chinese) | |
[9] | 林旭, 刘静, 吴中海, 等. 2021b. 环渤海湾盆地主要河流碎屑锆石U-Pb年龄特征及其物源示踪意义[J]. 海洋地质与第四纪地质, 41(2): 136-145. |
LIN Xu, LIU Jing, WU Zhong-hai, et al. 2021b. U-Pb age characteristics of major fluvial detrital zircons in the Bohai Bay Basin and their provenance implications[J]. Marine Geology and Quaternary Geology, 41(2): 136-145. (in Chinese) | |
[10] | 林旭, 赵希涛, 吴中海, 等. 2020b. 渤海湾周缘主要河流钾长石物源示踪指标研究[J]. 地质科技通报, 39(6): 10-18. |
LIN Xu, ZHAO Xi-tao, WU Zhong-hai, et al. 2020b. Source tracing elements of K-feldspar of main rivers around Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 39(6): 10-18. (in Chinese) | |
[11] | 刘昌明. 2014. 中国水文地理[M]. 北京: 科学出版社. |
LIU Chang-ming. 2014. Hydrogeography of China[M]. Science Press, Beijing. (in Chinese) | |
[12] | 王兆印, 王文龙, 田世民. 2007. 黄河流域泥沙矿物成分与分布规律[J]. 泥沙研究, 10(5): 1-8. |
WANG Zhao-yin, WANG Wen-long, TIAN Shi-min. 2007. Mineral composition and distribution of the sediment in the Yellow River Basin[J]. Journal of Sediment Research, 10(5): 1-8. (in Chinese) | |
[13] | 王中波, 杨守业, 李日辉, 等. 2010. 黄河水系沉积物碎屑矿物组成及沉积动力环境约束[J]. 海洋地质与第四纪地质, 30(4): 73-85. |
WANG Zhong-bo, YANG Shou-ye, LI Ri-hui, et al. 2010. Detrital mineral composition of the sediments from Huanghe and its hydrodynamic environmental constraints[J]. Marine Geology and Quaternary Geology, 30(4): 73-85. (in Chinese)
DOI URL |
|
[14] | 岳保静, 廖晶. 2016. 黄河流域现代沉积物碎屑锆石U-Pb年龄物源探讨[J]. 海洋地质与第四纪地质, 36(5): 109-119. |
YUE Bao-jing, LIAO Jing. 2016. Provenance study of Yellow River sediments by U-Pb dating of the detrital zircons[J]. Marine Geology and Quaternary Geology, 36(5): 109-119. (in Chinese) | |
[15] | 张理刚. 1995. 东亚岩石圈块体地质[M]. 北京: 科学出版社. |
ZHANG Li-gang. 1995. Lithospheric Block Geology in East Asia[M]. Science Press, Beijing. (in Chinese) | |
[16] | 张笑宇, 何梦颖, 王斌, 等. 2018. 渭河流域沉积物碎屑锆石U-Pb年龄物源示踪[J]. 海洋地质与第四纪地质, 38(1): 202-211. |
ZHANG Xiao-yu, HE Meng-ying, WANG Bin, et al. 2018. Provenance study of the sediments in Wei River using the detrital zircon U-Pb dating[J]. Marine Geology and Quaternary Geology, 38(1): 202-211. (in Chinese) | |
[17] | 中华人民共和国水利部. 2019. 中国河流泥沙公报[M]. 北京: 中国水利水电出版社. |
Ministry of Water Resources of the People’s Republic of China. 2019. Bulletin of River Sediment in China[M]. China Water and Power Press, Beijing. (in Chinese) | |
[18] |
Alizai A, Clift P D, Giosan L, et al. 2011. Pb isotopic variability in the modern-Pleistocene Indus River system measured by ion microprobe in detrital K-feldspar grains[J]. Geochimica et Cosmochimica Acta, 75(17): 4771-4795.
DOI URL |
[19] |
Barham M, Kirkland C L, Hovikoski J, et al. 2021. Reduce or recycle?Revealing source to sink links through integrated zircon-feldspar provenance fingerprinting[J]. Sedimentology, 68(2): 531-556.
DOI URL |
[20] | Blowick A, Haughton P, Tyrrell S, et al. 2019. All mixed up: Pb isotopic constraints on the transit of sands through the Mississippi-Missouri River drainage basin, North America[J]. Geological Socitey of America Bulletin, 131(9-10): 1501-1518. |
[21] |
Bodet F, Schärer U. 2001. Pb isotope systematics and time-integrated Th/U of SE-Asian continental crust recorded by single K-feldspar grains in large rivers[J]. Chemical Geology, 177(3-4): 265-285.
DOI URL |
[22] |
Fan Y, Mou X, Wang Y, et al. 2018. Quaternary paleoenvironmental evolution of the Tengger Desert and its implications for the provenance of the loess of the Chinese Loess Plateau[J]. Quaternary Science Reviews, 197: 21-34.
DOI URL |
[23] | Garzanti E, Andò S. 2007. Heavy mineral concentration in modern sands: Implications for provenance interpretation[J]. Developments in Sedimentology, 58: 517-545. |
[24] | Guo B, Liu S, Peng T, et al. 2018. Late Pliocene establishment of exorheic drainage in the northeastern Tibetan plateau as evidenced by the Wuquan Formation in the Lanzhou Basin[J]. Geomorphology, 33: 271-283. |
[25] | Guo B, Peng T, Yu H, et al. 2020. Magnetostratigraphy and palaeoclimatic significance of the Late Pliocene red clay-Quaternary loess sequence in the Lanzhou Basin, western Chinese Loess Plateau[J]. Geophysical Research Letters, 47(3): 1-10. |
[26] |
Hu B, Li G, Li J, et al. 2012. Provenance and climate change inferred from Sr-Nd-Pb isotopes of late Quaternary sediments in the Huanghe(Yellow River)Delta, China[J]. Quaternary Research, 78(3): 561-571.
DOI URL |
[27] |
Hu Z, Li M, Dong Z, et al. 2019. Fluvial entrenchment and integration of the Sanmen Gorge, the Lower Yellow River[J]. Global and Planetary Change, 178: 129-138.
DOI URL |
[28] |
Hu Z, Pan B, Bridgland D, et al. 2017. The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment[J]. Quaternary Science Reviews, 166: 324-338.
DOI URL |
[29] | Huang X, Mei X, Yang S, et al. 2021. Disentangling combined effects of sediment sorting, provenance, and chemical weathering from a Pliocene-Pleistocene sedimentary core(CSDP-1)in the South Yellow Sea[J]. Geochemistry, Geophysics, Geosystems, 22(5): 1-21. |
[30] |
Jia X, Wang H. 2011. Mineral compositions and sources of the riverbed sediment in the desert channel of Yellow River[J]. Environmental Monitoring and Assessment, 173(1): 969-983.
DOI URL |
[31] |
Johnson S P, Kirkland C L, Evans N J, et al. 2018. The complexity of sediment recycling as revealed by common Pb isotopes in K-feldspar[J]. Geoscience Frontiers, 9(5): 1515-1527.
DOI URL |
[32] |
Li B, Sun D, Xu W, et al. 2017. Paleomagnetic chronology and paleoenvironmental records from drill cores from the Hetao Basin and their implications for the formation of the Hobq Desert and the Yellow River[J]. Quaternary Science Reviews, 156: 69-89.
DOI URL |
[33] |
Lin X, Jolivet M, Liu-Zeng J, et al. 2022. The formation of the North Qilian Shan through time: Clues from detrital zircon fission-track data from modern river sediments[J]. Geosciences, 12(4), 166: 1-20.
DOI URL |
[34] |
Lin X, Tian Y, Donelick R A, et al. 2019. Mesozoic and Cenozoic tectonics of the northeastern edge of the Tibetan plateau: Evidence from modern river detrital apatite fission-track age constraints[J]. Journal of Asian Earth Sciences, 170: 84-95.
DOI |
[35] |
Liu J, Chen X, Shi W, et al. 2019. Tectonically controlled evolution of the Yellow River drainage system in the Weihe region, North China: Constraints from sedimentation, mineralogy and geochemistry[J]. Journal of Asian Earth Sciences, 179: 350-364.
DOI URL |
[36] |
Liu Y, Song H, An Z, et al. 2020. Recent anthropogenic curtailing of Yellow River runoff and sediment load is unprecedented over the past 500y[J]. Proceedings of the National Academy of Sciences, 117(31): 18251-18257.
DOI URL |
[37] | Munnikhuis J. 2016. Variation of Sr and Pb isotopes in megacrystic K-feldspar from the Cathedral Peak Granodiorite, California[D]. University of North Carolina, Raleigh. |
[38] | Nie J, Stevens T, Rittner M, et al. 2015. Loess plateau storage of northeastern Tibetan plateau-derived Yellow River sediment[J]. Nature Communications, 6(1): 1-10. |
[39] |
Pan B, Pang H, Gao H, et al. 2016. Heavy-mineral analysis and provenance of Yellow River sediments around the China Loess Plateau[J]. Journal of Asian Earth Sciences, 127: 1-11.
DOI URL |
[40] |
Pan B, Su H, Hu Z, et al. 2009. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: Evidence from a 1.24Ma terrace record near Lanzhou, China[J]. Quaternary Science Reviews, 28(27-28): 3281-3290.
DOI URL |
[41] |
Pan B T, Li Q Y, Hu X F, et al. 2013. Cretaceous and Cenozoic cooling history of the eastern Qilian Shan, north-eastern margin of the Tibetan plateau: Evidence from apatite fission-track analysis[J]. Terra Nova, 25(6): 431-438.
DOI URL |
[42] |
Pang H, Pan B, Garzanti E, et al. 2018. Mineralogy and geochemistry of modern Yellow River sediments: Implications for weathering and provenance[J]. Chemical Geology, 488: 76-86.
DOI URL |
[43] |
Qiao S, Shi X, Wang G, et al. 2017. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 390: 270-281.
DOI URL |
[44] | Sun Y, Yan Y, Nie J, et al. 2020. Source-to-sink fluctuations of Asian aeolian deposits since the late Oligocene[J]. Earth-Science Reviews, 200:102963. |
[45] |
Ta W, Xiao H, Dong Z. 2008. Long-term morphodynamic changes of a desert reach of the Yellow River following upstream large reservoirs’ operation[J]. Geomorphology, 97(3-4): 249-259.
DOI URL |
[46] |
Tyrrell S, Haughton P D W, Daly J S, et al. 2006. The use of the common Pb isotope composition of detrital K-feldspar grains as a provenance tool and its application to Upper Carboniferous paleodrainage, northern England[J]. Journal of Sedimentary Research, 76(2): 324-345.
DOI URL |
[47] |
Vermeesch P, Resentini A, Garzanti E. 2016. An R package for statistical provenance analysis[J]. Sedimentary Geology, 336: 14-25.
DOI URL |
[48] |
Wang C, Liang X, Foster D A, et al. 2019. Provenance and drainage evolution of the Red River revealed by Pb isotopic analysis of detrital K-feldspar[J]. Geophysical Research Letters, 46(12): 6415-6424.
DOI |
[49] |
Wang Z Y, Wu Y Q, Tan L H, et al. 2019. Provenance studies of aeolian sand in Mu Us Desert based on heavy-mineral analysis[J]. Aeolian Research, 40: 15-22.
DOI URL |
[50] |
Wang Z, Zhang H, Garzanti E, et al. 2019. Evolution of the Upper Yellow River as revealed by changes in heavy-mineral and geochemical (REE) signatures of fluvial terraces(Lanzhou, China)[J]. Minerals, 9(10): 1-13.
DOI URL |
[51] |
Woodhead J D, Hergt J M. 2007. Strontium, neodymium and lead isotope analyses of NIST glass certified reference materials: SRM 610, 612, 614[J]. Geostandards Newsletter, 25: 261-266.
DOI URL |
[52] | Xiao G, Pan Q, Zhao Q, et al. 2021. Early Pleistocene integration of the Yellow River Ⅱ: Evidence from the Plio-Pleistocene sedimentary record of the Fenwei Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 577:110550. |
[53] |
Xu Q, Yuan G, Ding J, et al. 2019. Cenozoic tectonic and paleoenvironmental evolution of northwestern China: Evidence from two deep boreholes in the Jartai Basin[J]. Journal of Asian Earth Sciences, 173: 98-112.
DOI URL |
[54] |
Xu Y M, Jiang S Y. 2017. In-situ analysis of trace elements and Sr-Pb isotopes of K-feldspars from Tongshankou Cu-Mo deposit, SE Hubei Province, China: Insights into early potassic alteration of the porphyry mineralization system[J]. Terra Nova, 29(6): 343-355.
DOI URL |
[55] | Yang J, Yuan H, Hu Y, et al. 2022. Significance of sedimentary provenance reconstruction based on borehole records of the North China Plain for the evolution of the Yellow River[J]. Geomorphology, 401:108077. |
[56] |
Yang S, Jung H S, Li C. 2004. Two unique weathering regimes in the Changjiang and Huanghe drainage basins: Geochemical evidence from river sediments[J]. Sedimentary Geology, 164(1-2): 19-34.
DOI URL |
[57] |
Yin A. 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis[J]. Tectonophysics, 488(1-4): 293-325.
DOI URL |
[58] | Zhang H, Nie J, Liu X, et al. 2021. Spatially variable provenance of the Chinese Loess Plateau[J]. Geology, 49(10): 1-5. |
[59] | Zhang H Z, Lu H Y, Zhou Y L, et al. 2021. Heavy mineral assemblages and U-Pb detrital zircon geochronology of sediments from the Weihe and Sanmen Basins: New insights into the Pliocene-Pleistocene evolution of the Yellow River[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 562: 110072. |
[60] |
Zhang J, Huang W W, Shi M C. 1990. Huanghe(Yellow River)and its estuary: Sediment origin, transport and deposition[J]. Journal of Hydrology, 120(1-4): 203-223.
DOI URL |
[61] |
Zhang J, Wan S, Clift P D, et al. 2019. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5Ma: Tectonic or climate forcing?[J]. Quaternary Science Reviews, 216: 74-88.
DOI |
[62] | Zhang X, Zhang G, Zhu G, et al. 1996. Elemental tracers for Chinese source dust[J]. Science in China(Ser D), 39(5): 512-521. |
[1] | 郭汝军, 魏传义, 李长安, 张玉芬, 李亚伟, 孙习林, 张增杰, 冷勇辉, 苏建超, 李国鼐, 吕凌云, 陈旭, 丁智强. 长江演化百年谜题: 回溯与进展[J]. 地震地质, 2023, 45(1): 1-28. |
[2] | 覃金堂, 陈杰, 李涛. 阿尔金断裂带中段现代沉积物样品钾长石红外激发后红外释光的残留信号——对年轻古地震事件测年的指示意义[J]. 地震地质, 2020, 42(4): 981-992. |
[3] | 党嘉祥, 周永胜. 花岗质岩石在脆塑性转化域的变形机制[J]. 地震地质, 2020, 42(1): 198-211. |
[4] | 李亚伟, 李长安, 张玉芬, 林旭, 王节涛, 孙习林, 魏传义, 郭汝军, 冷勇辉. 长江流域碎屑锆石U-Pb年龄物源示踪研究进展[J]. 地震地质, 2019, 41(2): 521-544. |
[5] | 姚文倩, 刘静, Michael Oskin, 韩龙飞, 李雪, 恒, 徐心悦, 李占飞, 张金玉. 利用R语言半自动化提取河流阶地——以米家山黄河阶地为例[J]. 地震地质, 2019, 41(2): 363-376. |
[6] | 闫小兵, 李自红, 赵晋泉, 扈桂让, 郭瑾. 黄河壶口逆源速率及其与韩城断裂的关系[J]. 地震地质, 2016, 38(4): 911-921. |
[7] | 张鹏, 李丽梅, 刘建达, 许汉刚, 李金良, 顾勤平, 蒋新. 徐州废黄河断裂的第四纪活动性[J]. 地震地质, 2015, 37(1): 208-221. |
[8] | 雷启云, 柴炽章, 郑文俊, 杜鹏, 谢晓峰, 王银, 崔瑾, 孟广魁. 钻探揭示的黄河断裂北段活动性和滑动速率[J]. 地震地质, 2014, 36(2): 464-477. |
[9] | 万景林, 郑德文, 郑文俊, 王伟涛. MDD法和裂变径迹法相结合模拟样品的低温热历史——以柴达木盆地北缘赛什腾山中新生代构造演化为例[J]. 地震地质, 2011, 33(2): 369-382. |
[10] | 陈丁, 张景发, 朱鲁, 姜文亮, 路晓翠, 刘建达, 李丽梅, 张鹏. 徐州废黄河断裂带的空间展布与活动性研究[J]. 地震地质, 2011, 33(1): 67-78. |
[11] | 刘百篪, 刘小凤, 袁道阳, 郑文俊, 郭华, 曹娟娟. 黄河中上游阶地对青藏高原东北部第四纪构造活动的反映[J]. 地震地质, 2003, 25(1): 133-145. |
[12] | 刘传正. 宁夏沙坡头地区黄河弯曲的成因[J]. 地震地质, 1996, 18(1): 91-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||