地震地质 ›› 2022, Vol. 44 ›› Issue (4): 1011-1028.DOI: 10.3969/j.issn.0253-4967.2022.04.012
宫猛1,2,3)(), 吕坚1),*(), 郑勇4), 谢祖军4), 盛书中1,3), 张杏棉3)
收稿日期:
2021-05-06
修回日期:
2021-07-12
出版日期:
2022-08-20
发布日期:
2022-09-23
通讯作者:
吕坚
作者简介:
宫猛, 男, 1983年生, 2019年于中国地震局地质研究所获构造地质学专业博士学位, 副研究员, 主要从事数字地震学与地震危险性研究, E-mail: mrgongm@163.com。
基金资助:
GONG Meng1,2,3)(), LÜ Jian1),*(), ZHENG Yong4), XIE Zu-jun4), SHENG Shu-zhong1,3), ZHANG Xing-mian3)
Received:
2021-05-06
Revised:
2021-07-12
Online:
2022-08-20
Published:
2022-09-23
Contact:
LÜ Jian
摘要:
文中使用华南地块及其邻区609个宽频地震仪记录的2010年1月-2012年12月共36个月垂直分量(Z分量)的连续噪声数据, 通过波形互相关和叠加计算得到各台站对间的经验格林函数, 采用时频分析方法(FTAN)提取台站对之间的瑞利波相速度频散曲线, 并使用非线性贝叶斯蒙特卡罗方法反演获得华南地块及其邻区的三维S波速度结构。结果显示, S波速度的分布特征与地表地质和构造特征表现出较好的相关性, 能清晰地揭示出地壳内部的横向速度变化。盆地和地堑地区由于受沉积层的影响, 浅层的S波速度表现为低速异常。 江汉盆地和四川盆地的中下地壳存在高速异常, 表明盆地的中、 下地壳较冷、 硬。四川盆地内部由于存在上地幔上拱现象, 其壳-幔S波速度整体相对较高, 且盆地内部中心区域的S波速度高于边缘区域。位于华南地块内部的扬子地块和华夏地块由于演化过程有所不同, 上地幔的S波速度结构存在较大差异。扬子地块的S波速度相对较高, 说明其块体内部结构相对稳定, 而华夏地块的S波呈现低速异常, 预示着在其演化过程中存在强烈的岩浆活动。位于华南地块西南边界以西区域的壳-幔S波速度呈低速异常, 可能预示着青藏高原东缘中下地壳存在软流层。秦岭-大别造山带东、 西2段的S波速度结构存在较大差异, 以地壳厚度过渡带为界呈现东高西低的分布特征。鄂尔多斯块体的壳-幔S波速度相对较高, 说明其块体内部结构相对稳定, 但其西南角上地幔中的S波呈现低速异常, 可能表明华北克拉通上地幔热流已经开始对鄂尔多斯的岩石圈进行“侵入”改造。
中图分类号:
宫猛, 吕坚, 郑勇, 谢祖军, 盛书中, 张杏棉. 华南地块及邻区基于背景噪声的壳幔三维S波速度结构[J]. 地震地质, 2022, 44(4): 1011-1028.
GONG Meng, LÜ Jian, ZHENG Yong, XIE Zu-jun, SHENG Shu-zhong, ZHANG Xing-mian. THREE-DIMENSIONAL S-WAVE VELOCITY DISTRIBUTION BASED ON AMBIENT NOISE ANALYSIS IN SOUTH CHINA BLOCK AND ITS ADJACENT AREAS[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(4): 1011-1028.
图1 研究区域的地形地貌(a)及台站分布图(b) a 蓝色粗线表示华南地块边界(张培震等, 2013), 蓝色细线为扬子地块与华夏地块边界(朱介寿等, 2005), 黑色线条为各次级块体边界(朱介寿等, 2005; 张培震等, 2013), 红色粗实线为图7中6条S波速度剖面的位置; b 黑色三角形为本研究使用的台站
Fig. 1 Tectonic map of South China block(a)and the distribution of the stations(b).
图2 台站AHANQ与其他台站组成台站对之间的互相关函数经过反转叠加和滤波(4~50s)后的结果
Fig. 2 Symmetric component of the cross-correlation between station AHANQ and other stations(band-pass filtered 4~50s).
图4 周期为6s、 20s、 30s和50s的瑞利波相速度分辨率图(改自吕坚等, 2016)
Fig. 4 Rayleigh wave phase velocity resolution maps with periods of 6s, 20s, 30s, and 50s(modified from LÜ Jian et al., 2016).
图5 利用图3 中几个典型区域的面波相速度频散曲线反演得到的最佳速度模型 灰色区域为2倍标准残差的误差范围
Fig. 5 Ensemble of accepted models determined from each of the corresponding pairs of dispersion curves in Fig. 3.
图7 图1中6条剖面的地壳S波速度和上地幔S波速度扰动分布图 黑色曲线为莫霍面分布, 地壳范围内的结果为S波速度分布, 上地幔范围的结果为S波速度相对于4.5km/s的扰动分布
Fig. 7 Vertical slices of the estimated VS model along the six profiles plotted in Fig. 1a.
[1] | 陈九辉, 刘启元, 李顺成, 等. 2005. 青藏高原东北缘-鄂尔多斯地块地壳上地幔S波速度结构[J]. 地球物理学报, 48(2): 333-342. |
CHEN Jiu-hui, LIU Qi-yuan, LI Shun-cheng, et al. 2005. Crust and upper mantle S-wave velocity structure across northeastern Tibetan plateau and Ordos block[J]. Chinese Journal of Geophysics, 48(2): 333-342. (in Chinese) | |
[2] | 邓山泉, 章文波, 于湘伟, 等. 2020. 利用区域双差层析成像方法研究川滇南部地壳结构特征[J]. 地球物理学报, 63(10): 87-102. |
DENG Shan-quan, ZHANG Wen-bo, YU Xiang-wei, et al. 2020. Analysis on crustal structure characteristic of southern Sichuan-Yunnan by regional double-difference seismic tomography[J]. Chinese Journal of Geophysics, 63(10): 87-102. (in Chinese) | |
[3] | 宫猛, 李红谊, 徐小明, 等. 2010. 青藏高原东部基于噪声的面波群速度分布特征[J]. 地学前缘, 17(5): 151-162. |
GONG Meng, LI Hong-yi, XU Xiao-ming, et al. 2010. Surface wave group velocity distribution based on ambient noise analysis in eastern Tibet[J]. Earth Science Frontiers, 17(5): 151-162. | |
[4] | 顾勤平, 丁志峰, 康清清, 等. 2020a. 郯庐断裂带中南段及邻区基于背景噪声的瑞利波群速度层析成像[J]. 地球物理学报, 63(4): 1505-1522. |
GU Qin-ping, DING Zhi-feng, KANG Qing-qing, et al. 2020a. Group velocity tomography of Rayleigh wave in the middle-southern segment of the Tan-Lu fault zone and adjacent regions using ambient seismic noise[J]. Chinese Journal of Geophysics, 63(4): 1505-1522. (in Chinese) | |
[5] | 顾勤平, 康清清, 张鹏, 等. 2020b. 郯庐断裂带中南段及邻区Rayleigh波相速度与方位各向异性[J]. 地震地质, 42(5): 1129-1152. |
GU Qin-ping, KANG Qing-qing, DING Zhi-feng, et al. 2020b. Rayleigh wave phase velocity and azimuthal anisotropy of the middle-southern segment of the Tan-Lu fault zone and adjacent regions from ambient noise tomography[J]. Seismology and Geology, 42(5): 1129-1152. (in Chinese) | |
[6] | 黄金莉, 宋晓东, 汪素云. 2003. 川滇地区上地幔顶部Pn速度细结构[J]. 中国科学(D辑), 33(S1): 144-150. |
HUANG Jin-li, SONG Xiao-dong, WANG Su-yun. 2003. High resolution Pn velocity structure of upper mantle in Sichuan-Yunnan region[J]. Science in China(Ser D), 33(S1): 144-150. (in Chinese) | |
[7] | 嘉世旭, 李志雄, 徐朝繁, 等. 2006. 雷琼拗陷地壳结构特征[J]. 地球物理学报, 49(5): 1385-1394. |
JIA Shi-xu, LI Zhi-xiong, XU Zhao-fan, et al. 2006 Crustal structure features of the Leiqiong depression in Hainan Province[J]. Chinese Journal of Geophysics, 49(5): 1385-1394. (in Chinese) | |
[8] | 李多, 周仕勇, 陈永顺, 等. 2012. 鄂尔多斯地区上地幔岩石圈三维速度结构面波反演研究[J]. 地球物理学报, 55(5): 1613-1623. |
LI Duo, ZHOU Shi-yong, CHEN Yong-shun, et al. 2012. 3-D lithospheric structure of upper mantle beneath Ordos region from Rayleigh-wave tomography[J]. Chinese Journal of Geophysics, 55(5): 1613-1623. (in Chinese) | |
[9] | 李红谊, 刘福田, 孙若昧, 等. 2001. 中国大陆东部及海域地壳-上地幔结构研究[J]. 地震学报, 23(5): 471-479. |
LI Hong-yi, LIU Fu-tian, SUN Ruo-mei, et al. 2001. A study on the crust and upper mantle structure in the East China and sea areas[J]. Acta Seismologica Sinica, 23(5): 471-479. (in Chinese) | |
[10] | 李鹏, 周仕勇, 陈永顺, 等. 2010. 利用双平面波干涉面波层析成像方法研究山西断陷盆地及鄂尔多斯地台三维速度结构[J]. CT理论与应用研究, 19(3): 47-60. |
LI Peng, ZHOU Shi-yong, CHEN Yong-shun, et al. 2010. 3D velocity structure in Shanxi graben and Ordos from two plane waves method[J]. Computerized Tomography Theory and Applications, 19(3): 47-60. (in Chinese) | |
[11] | 吕坚, 谢祖军, 郑勇, 等. 2016. 华南地块及其邻区Rayleigh波相速度层析成像研究[J]. 中国科学(D辑), 46(11): 1528-1541. |
LÜ Jian, XIE Zu-jun, ZHENG Yong, et al. 2016. Rayleigh wave phase velocities of South China block and its adjacent areas[J]. Science in China(Ser D), 46(11): 1528-1541. (in Chinese) | |
[12] | 罗松, 姚华建, 李秋生, 等. 2019. 长江中下游成矿带高分辨地壳三维横波速度结构及其形成的深部动力学背景[J]. 中国科学(D辑), 49(9): 1394-1412. |
LUO Song, YAO Hua-jian, LI Qiu-sheng, et al. 2019. High-resolution 3D crustal S-wave velocity structure of the middle-lower Yangtze River metallogenic belt and implications for its deep geodynamic setting[J]. Science in China(Ser D), 49(9): 1394-1412. (in Chinese) | |
[13] | 马杏垣. 1989. 中国岩石圈动力学地图集[CM]. 北京: 中国地图出版社. |
MA Xing-yuan. 1989. Lithospheric Dynamics Atlas of China[CM]. China Cartographic Publishing House, Beijing. (in Chinese) | |
[14] | 孟亚锋, 姚华建, 王行舟, 等. 2019. 基于背景噪声成像方法研究郯庐断裂带中南段及邻区地壳速度结构与变形特征[J]. 地球物理学报, 62(7): 2490-2509. |
MENG Ya-feng, YAO Hua-jian, WANG Xing-zhou, et al. 2019. Crustal velocity structure and deformation features in the central-southern segment of Tanlu fault zone and its adjacent area from ambient noise tomography[J]. Chinese Journal of Geophysics, 62(7): 2490-2509. (in Chinese) | |
[15] | 欧阳龙斌, 李红谊, 吕庆田, 等. 2015. 长江中下游成矿带及邻区地壳剪切波速度结构和径向各向异性[J]. 地球物理学报, 58(12): 4388-4402. |
OUYANG Long-bin, LI Hong-yi, LÜ Qing-tian, et al. 2015. Crustal shear wave velocity structure and radial anisotropy beneath the middle-lower Yangtze River metallogenic belt and surrounding areas from seismic ambient noise tomography[J]. Chinese Journal of Geophysics, 58(12): 4388-4402. (in Chinese) | |
[16] | 曲平, 陈永顺, 于勇, 等. 2020. 华南地区上地幔P波三维速度结构和动力学意义: 来自有限频层析成像的证据[J]. 地球物理学报, 63(8): 2954-2969. |
QU Ping, CHEN Yong-shun, YU Yong, et al. 2020. 3D velocity structure of upper mantle beneath South China and its tectonic implication: Evidence from finite frequency seismic tomography[J]. Chinese Journal of Geophysics, 63(8): 2954-2969. (in Chinese) | |
[17] | 滕吉文, 张中杰, 胡家富, 等. 2001. 中国东南大陆及陆缘地带的瑞利波频散与剪切波三维速度结构[J]. 地球物理学报, 44(5): 663-677. |
TENG Ji-wen, ZHANG Zhong-jie, HU Jia-fu, et al. 2001. The Rayleigh wave dispersion and three dimensional velocity structure in continent and its margin of Southeast China[J]. Chinese Journal of Geophysics, 44(5): 663-677. (in Chinese) | |
[18] | 王椿镛, 张先康, 陈步云, 等. 1997. 大别造山带的地壳结构研究[J]. 中国科学(D辑), 27(3): 221-226. |
WANG Chun-yong, ZHANG Xian-kang, CHEN Bu-yun, et al. 1997. Crustal structure of the Dabie orogenic belt[J]. Science in China(Ser D), 27(3): 221-226. (in Chinese) | |
[19] | 王伟涛, 倪四道, 王宝善. 2012. 中国中东部地震台站噪声互相关函数中面波前驱信号的分析研究[J]. 地球物理学报, 55(2): 503-512. |
WANG Wei-tao, NI Si-dao, WANG Bao-shan. 2012. Studies on a persistent localized microseism source that produces precursors on noise correlation function observed using stations in central-eastern China[J]. Chinese Journal of Geophysics, 55(2): 503-512. (in Chinese) | |
[20] | 徐树斌, 米宁, 徐鸣洁, 等. 2013. 利用接收函数研究渭河地堑及其周边地壳结构[J]. 中国科学(D辑), 43(10): 1651-1658. |
XU Shu-bin, MI Ning, XU Ming-jie, et al. 2013. Crustal structures of the Weihe graben and its surroundings from receiver functions[J]. Science in China(Ser D), 43(10): 1651-1658. (in Chinese) | |
[21] | 杨晓瑜, 李永华. 2021. 中国华南地区地壳厚度与波速比分布特征及其地质意义[J]. 地球物理学报, 64(1): 146-156. |
YANG Xiao-yu, LI Yong-hua. 2021. Crustal thicknesses and VP/VS ratios beneath South China estimated from receiver function analysis and their geological implications[J]. Chinese Journal of Geophysics, 64(1): 146-156. (in Chinese) | |
[22] | 易桂喜, 姚华建, 朱介寿, 等. 2008. 中国大陆及邻区Rayleigh面波相速度分布特征[J]. 地球物理学报, 51(2): 402-411. |
YI Gui-xi, YAO Hua-jian, ZHU Jie-shou, et al. 2008. Rayleigh-wave phase velocity distribution in China continent and its adjacent regions[J]. Chinese Journal of Geophysics, 51(2): 402-411. (in Chinese) | |
[23] | 袁学诚, 华九如. 2011. 华南岩石圈三维结构[J]. 中国地质, 38(1): 1-19. |
YUAN Xue-cheng, HUA Jiu-ru. 2011. 3D lithospheric structure of South China[J]. Geology in China, 38(1): 1-19. (in Chinese) | |
[24] | 查小惠, 吕坚, 江春亮, 等. 2021. 基于接收函数的华南及邻区地壳结构研究[J]. 大地测量与地球动力学, 41(1): 67-73. |
ZHA Xiao-hui, LÜ Jian, JIANG Chun-liang, et al. 2021. Study on crustal structure in South China and adjacent areas based on receiver function[J]. Journal of Geodesy and Geodynamics, 41(1): 67-73. (in Chinese) | |
[25] | 张国伟, 郭安林, 王岳军, 等. 2013. 中国华南大陆构造与问题[J]. 中国科学(D辑), 43(10): 1553-1582. |
ZHANG Guo-wei, GUO An-lin, WANG Yue-jun, et al. 2013. Tectonics of South China continent and its implications[J]. Science in China(Ser D), 43(10): 1553-1582. (in Chinese) | |
[26] | 张培震, 邓起东, 张竹琪, 等. 2013. 中国大陆的活动断裂、 地震灾害及其动力过程[J]. 中国科学(D辑), 43(10): 1607-1620. |
ZHANG Pei-zhen, DENG Qi-dong, ZHANG Zhu-qi, et al. 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Science in China(Ser D), 43(10): 1607-1620. (in Chinese) | |
[27] | 郑现, 赵翠萍, 周连庆, 等. 2012. 中国大陆中东部地区基于背景噪声的瑞利波层析成像[J]. 地球物理学报, 55(6): 1919-1928. |
ZHENG Xian, ZHAO Cui-ping, ZHOU Lian-qing, et al. 2012. Rayleigh wave tomography from ambient noise in central and eastern Chinese mainland[J]. Chinese Journal of Geophysics, 55(6): 1919-1928. (in Chinese) | |
[28] | 郑秀芬, 欧阳飚, 张东宁, 等. 2009. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报, 52(5): 1412-1417. |
ZHENG Xiu-fen, OUYANG Biao, ZHANG Dong-ning, et al. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics, 52(5): 1412-1417. (in Chinese) | |
[29] | 朱介寿, 蔡学林, 赵风清, 等. 2005. 中国华南及东海地区岩石圈三维结构及演化[M]. 北京: 地质出版社. |
ZHU Jie-shou, CAI Xue-lin, ZHAO Feng-qing, et al. 2005. Three-dimensional Structure and Evolution of Lithosphere in South China and East China Sea[M]. Geological Publishing House, Beijing. (in Chinese) | |
[30] |
Barmin M P, Ritzwoller M H, Levshin A L. 2001. A fast and reliable method for surface wave tomography[J]. Pure and Applied Geophysics, 158(8): 1351-1375.
DOI URL |
[31] |
Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 169(3): 1239-1260.
DOI URL |
[32] |
Huang R, Xu Y, Zhu L, et al. 2015. Detailed Moho geometry beneath southeastern China and its implications on thinning of continental crust[J]. Journal of Asian Earth Sciences, 112(15): 42-48.
DOI URL |
[33] |
Li H Y, Su W, Wang C Y, et al. 2009. Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet[J]. Earth and Planetary Science Letters, 282(1-4): 201-211.
DOI URL |
[34] |
Li X H. 2000. Cretaceous magmatism and lithospheric extension in Southeast China[J]. Journal of Asian Earth Sciences, 18(3): 293-305.
DOI URL |
[35] |
Li X H, Li W X, Li Z X, et al. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174(1-2): 117-128.
DOI URL |
[36] |
Li Y H, Gao M T, Wu Q J. 2014. Crustal thickness map of the Chinese mainland from teleseismic receiver functions[J]. Tectonophysics, 611: 51-60.
DOI URL |
[37] |
Lin F C, Moschetti M P, Ritzwoller M H. 2008. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps[J]. Geophysical Journal International, 173(1): 281-298.
DOI URL |
[38] |
Mosegaard K, Tarantola A. 1995. Monte-Carlo sampling of solutions to inverse problems[J]. Journal of Geophysical Research, 100(B7): 12431-12447.
DOI URL |
[39] |
Pan Y, Shen W B. 2017. Contemporary crustal movement of southeastern Tibet: Constraints from dense GPS measurements[J]. Scientific Reports, 7(1): 1-7.
DOI URL |
[40] |
Shapiro N M, Ritzwoller M H. 2002. Monte-Carlo inversion for a global shear velocity model of the crust and upper mantle[J]. Geophysical Journal International, 151(1): 88-105.
DOI URL |
[41] | Shen W S, Ritzwoller M H, Vera S P. 2013a. A 3-D model of the crust and uppermost mantle beneath the central and western US by joint inversion of receiver functions and surface wave dispersion[J]. Journal of Geophysical Research, 118(1): 262-276. |
[42] |
Shen W S, Ritzwoller M H, Vera S P, et al. 2013b. Joint inversion of surface wave dispersion and receiver functions: A Bayesian Monte-Carlo approach[J]. Geophysical Journal International, 192(2): 807-836.
DOI URL |
[43] |
Tapponnier P, Molnar P. 1977. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 82(20): 2905-2930.
DOI URL |
[44] |
Wessel P, Smith W. 1998. New, improved version of generic mapping tools released[J]. Eos Transactions American Geophysical Union, 79(47): 579.
DOI URL |
[45] | Yang Y J, Ritzwoller M H, Lin F C, et al. 2008. Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography[J]. Journal of Geophysical Research, 113: B12310. |
[46] | Yang Y J, Zheng Y, Chen Y J, et al. 2010. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography[J]. Geochemistry Geophysics Geosystems, 11(8): Q08010. |
[47] |
Yu Yong, Chen Y J. 2016. Seismic anisotropy beneath the southern Ordos block and the Qinling-Dabie orogen, China: Eastward Tibetan asthenospheric flow around the southern Ordos[J]. Earth and Planetary Science Letters, 455: 1-6.
DOI URL |
[48] |
Zhang P Z, Shen Z, Min W, et al. 2004. Continuous deformation of the Tibetan plateau from global positioning system data[J]. Geology, 32(9): 809-812.
DOI URL |
[49] | Zheng S H Sun, X L, Song X D, et al. 2008. Surface wave tomography of China from ambient seismic noise correlation[J]. Geochemistry Geophysics Geosystems, 9(5): Q0502. |
[50] | Zheng Y, Yang Y J, Ritzwoller M H, et al. 2010. Crustal structure of the northeastern Tibetan plateau, the Ordos Block, and the Sichuan Basin from ambient noise tomography[J]. Earthquake Science, 3: 465-476. |
[51] | Zheng Y, Shen W S, Yang Y, et al. 2011. Ambient noise Rayleigh wave tomography for northeast China, the Korean Peninsula, and the Sea of Japan[J]. Journal of Geophysical Research, 116: B12312. |
[52] |
Zhou L Q, Xie J, Shen W S, et al. 2012. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography[J]. Geophysical Journal International, 189(3): 1565-1583.
DOI URL |
[53] |
Zhou X M, Sun T, Shen W, et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1): 26-33.
DOI URL |
[1] | 周铭, 段永红, 檀玉娟, 邱勇. 基于密集台阵的东濮凹陷中北段浅层速度结构[J]. 地震地质, 2023, 45(2): 517-535. |
[2] | 苟家宁, 刘子维, 江颖, 张晓彤. 震前重力扰动与背景噪声时空变化特征以玛多MS7.4与漾濞MS6.4地震为例[J]. 地震地质, 2023, 45(1): 252-268. |
[3] | 杨建文, 金明培, 茶文剑, 张天继, 叶泵. 利用接收函数两步反演法研究小江断裂带及邻区地壳S波速度结构[J]. 地震地质, 2023, 45(1): 190-207. |
[4] | 马小军, 吴庆举, 潘佳铁, 钟世军, 徐荟. 基于多通道互相关的青藏高原东北缘背景噪声程函层析成像[J]. 地震地质, 2022, 44(3): 604-624. |
[5] | 杨建文, 金明培, 叶泵, 高琼, 陈佳, 张华英, 邓嘉美. 利用背景噪声研究漾濞MS6.4地震前区域波速变化[J]. 地震地质, 2021, 43(5): 1171-1187. |
[6] | 王继鑫, 荣棉水, 符力耘, 傅磊. 用微动台阵记录联合反演场地浅层速度结构——以唐山响嘡台3#场地为例[J]. 地震地质, 2020, 42(6): 1335-1353. |
[7] | 顾勤平, 康清清, 张鹏, 孟科, 吴珊珊, 李正楷, 王俊菲, 黄群, 蒋新, 李大虎. 郯庐断裂带中南段及邻区Rayleigh波相速度与方位各向异性[J]. 地震地质, 2020, 42(5): 1129-1152. |
[8] | 孔祥艳, 吴建平, 房立华, 蔡妍, 范莉苹, 王未来. 利用面波频散和接收函数联合反演中国境内天山及邻区的地壳上地幔速度结构[J]. 地震地质, 2020, 42(4): 844-865. |
[9] | 宗健业, 孙新蕾, 张鹏. 利用HVSR方法研究广州地区的场地效应及估算地震灾害特征[J]. 地震地质, 2020, 42(3): 628-639. |
[10] | 冯红武, 颜文华, 严珊, 郭瑛霞, 惠少兴, 常城. 背景噪声和地震面波联合反演渭河盆地及邻区壳幔S波速度结构[J]. 地震地质, 2019, 41(5): 1185-1205. |
[11] | 王霞, 宋美琴, 郑勇, 艾三喜. 山西及邻区壳幔速度图像特征及其构造意义[J]. 地震地质, 2019, 41(1): 119-136. |
[12] | 熊诚, 谢祖军, 郑勇, 熊熊, 艾三喜, 谢仁先. 大别—郯庐造山带地壳上地幔Rayleigh面波层析成像[J]. 地震地质, 2019, 41(1): 1-20. |
[13] | 谢辉, 马禾青, 焦明若, 马小军, 张楠, 李青梅. 利用背景噪声成像技术反演宁夏及邻区S波速度结构[J]. 地震地质, 2017, 39(3): 605-622. |
[14] | 宫猛, 徐锡伟, 张新东, 欧阳龙斌, 江国焰, 董博. 华北东部基于背景噪声的壳幔三维S波速度结构[J]. 地震地质, 2017, 39(1): 130-146. |
[15] | 罗佳宏, 马文涛. 三峡库区上地壳速度结构初步研究[J]. 地震地质, 2016, 38(2): 329-341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||