地震地质 ›› 2022, Vol. 44 ›› Issue (1): 150-169.DOI: 10.3969/j.issn.0253-4967.2022.01.010
收稿日期:
2021-02-19
修回日期:
2021-05-16
出版日期:
2022-02-20
发布日期:
2022-04-20
作者简介:
吴果, 男, 1988年生, 2018年于中国地震局地质研究所获固体地球物理学博士学位, 助理研究员, 主要研究方向为地震活动性与地震危险性分析, 电话: 18810404034, E-mail: wgfirst@foxmail.com。
基金资助:
WU Guo1)(), RAN Hong-liu1), ZHOU Qing1), XIE Zhuo-juan2)
Received:
2021-02-19
Revised:
2021-05-16
Online:
2022-02-20
Published:
2022-04-20
摘要:
海域地震对中国沿海地区的经济建设和海洋资源开发构成了严重威胁, 研究中国海域及邻区的地震活动模型是中国下一代地震区划图的重点工作之一。文中基于最新编制的中国海域地震目录, 首次建立了中国海域及邻区的自适应空间平滑地震活动模型。首先对地震目录进行除丛, 以地震带为单位评估震级间隔为0.5的震级档完整记录的起止时间, 进而采用极大似然法求出各个地震带的b值等地震活动参数; 在此基础上, 使用改进的自适应空间平滑算法建立模型, 并采用概率增益函数评估不同参数设置下模型的优劣, 最后分析了本模型的优点和局限性。结果显示, 本模型与传统的固定平滑半径的模型相比具有更优的概率增益函数表现; 将输入模型地震的最小震级设为M4.0时, 模型的表现达到最优; 模型的表现不一定随着输入地震数的增多而提高, 因此选择参数时需要综合考虑研究区内地震的分布和记录情况; 考虑到本模型只基于历史和仪器地震目录, 存在一定的局限性, 建议使用时结合断层模型等形成混合模型以完善模型体系。文中采用的自适应空间平滑算法可以充分利用完整性随时间和空间变化的地震数据, 在地震危险性分析和中长期地震预测上有一定的应用价值。同时, 文中建立的模型可以作为分析中国海域地震危险性的基础模型之一, 为编制中国海域地震区划图提供技术支撑。
中图分类号:
吴果, 冉洪流, 周庆, 谢卓娟. 中国海域及邻区自适应空间平滑地震活动模型[J]. 地震地质, 2022, 44(1): 150-169.
WU Guo, RAN Hong-liu, ZHOU Qing, XIE Zhuo-juan. ADAPTIVELY SMOOTHED SEISMICITY MODEL FOR CHINA SEAS AND ADJACENT REGIONS[J]. SEISMOLOGY AND EGOLOGY, 2022, 44(1): 150-169.
图 1 中国海域及邻区震中分布图(1767BC—2018年10月) 高程数据引自文献①(① https://www.ngdc.noaa.goy/mgg/global/。)
Fig. 1 The distribution map of earthquakes in China seas and adjacent areas(1767BC—2018-10).
图 2 a 中国海域及邻区M5.0以上主震的震中分布图; b 研究区内的地震带分布图(引自高战武等, 2021) A 华北平原地震带; B 郯庐地震带; C 长江下游-南黄海地震带; D 朝鲜地震带; E 东海地震带; F 琉球海沟地震带; G 华南沿海地震带; H 台湾西部地震带; I 台湾南-马尼拉海沟地震带; J 南海地震带
Fig. 2 The distribution map of M≥5.0 main shocks in China seas and adjacent areas(a); the locations of seismic zones in the study area(b)(Cited from GAO Zhan-wu et al., 2020).
地震带编号和名称 | 震级档(间隔0.5)的起始震级 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 | 8.0 | |
A华北平原地震带 | 1970* | 1970* | 1970* | 1970 | 1970 | 1968 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | |
B郯庐地震带 | 1970* | 1970* | 1970* | 1970 | 1970 | 1970 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 |
C长江下游-南黄海地震带 | 1970* | 1970* | 1970 | 1970 | 1970 | 1500 | 1500 | 1500 | 1500 | 1500 | |||
D朝鲜地震带 | 1978— 1987 | 1973— 1987 | 1973— 1987 | 1975 | 1400— 1737 | 1400— 1757 | 1400— 1713 | 1400 | 1400 | 1400 | |||
2007— 2017 | 2007— 2017 | 2007— 2017 | 1963— 2017 | 1936— 2017 | 1936— 2017 | ||||||||
E 东海地震带 | 1997 | 1992 | 1992 | 1986 | 1923 | 1923 | |||||||
F琉球海沟地震带 | 1997 | 1997 | 1990 | 1990 | 1968 | 1950 | 1909 | 1904 | 1904 | ||||
G华南沿海地震带 | 1973* | 1973* | 1972 | 1971 | 1970 | 1970 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | |
H台湾西部地震带 | 1971* | 1970 | 1927 | 1917 | 1845 | 1811 | 1811 | 1811 | |||||
I台湾南-马尼拉海沟地震带 | 2011 | 2011 | 2002 | 1993 | 1946 | 1915 | 1910 | 1902 | 1902 | 1902 | |||
J 南海地震带 | 2011 | 2011 | 2008 | 1997 | 1950 | 1926 | 1926 | 1926 | 1926 |
表1 中国海域及邻区地震带各震级档对应完整记录的起始年份
Table 1 The start years from which the earthquake catalogs within different magnitude intervals are completely recorded for the seismic zones in China seas and adjacent regions
地震带编号和名称 | 震级档(间隔0.5)的起始震级 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 | 8.0 | |
A华北平原地震带 | 1970* | 1970* | 1970* | 1970 | 1970 | 1968 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | |
B郯庐地震带 | 1970* | 1970* | 1970* | 1970 | 1970 | 1970 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 |
C长江下游-南黄海地震带 | 1970* | 1970* | 1970 | 1970 | 1970 | 1500 | 1500 | 1500 | 1500 | 1500 | |||
D朝鲜地震带 | 1978— 1987 | 1973— 1987 | 1973— 1987 | 1975 | 1400— 1737 | 1400— 1757 | 1400— 1713 | 1400 | 1400 | 1400 | |||
2007— 2017 | 2007— 2017 | 2007— 2017 | 1963— 2017 | 1936— 2017 | 1936— 2017 | ||||||||
E 东海地震带 | 1997 | 1992 | 1992 | 1986 | 1923 | 1923 | |||||||
F琉球海沟地震带 | 1997 | 1997 | 1990 | 1990 | 1968 | 1950 | 1909 | 1904 | 1904 | ||||
G华南沿海地震带 | 1973* | 1973* | 1972 | 1971 | 1970 | 1970 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | |
H台湾西部地震带 | 1971* | 1970 | 1927 | 1917 | 1845 | 1811 | 1811 | 1811 | |||||
I台湾南-马尼拉海沟地震带 | 2011 | 2011 | 2002 | 1993 | 1946 | 1915 | 1910 | 1902 | 1902 | 1902 | |||
J 南海地震带 | 2011 | 2011 | 2008 | 1997 | 1950 | 1926 | 1926 | 1926 | 1926 |
地震带编号和名称 | Mmin | Mmax | a值 | b值 | b值标准差 |
---|---|---|---|---|---|
A 华北平原地震带 | 2.0 | 8.0 | 3.845 | 0.867 | 0.008 |
B 郯庐地震带 | 2.0 | 8.5 | 3.836 | 0.840 | 0.007 |
C 长江下游-南黄海地震带 | 2.5 | 7.5 | 3.754 | 0.876 | 0.014 |
D 朝鲜地震带 | 2.5 | 7.5 | 3.671 | 0.910 | 0.017 |
E 东海地震带 | 3.5 | 6.5 | 2.314 | 0.686 | 0.143 |
F 琉球海沟地震带 | 4.0 | 8.5 | 4.601 | 0.739 | 0.017 |
G 华南沿海地震带 | 2.0 | 8.0 | 3.895 | 0.855 | 0.007 |
H 台湾西部地震带 | 4.0 | 8.0 | 3.717 | 0.747 | 0.034 |
I 台湾南-马尼拉海沟地震带 | 4.0 | 8.5 | 4.112 | 0.687 | 0.023 |
J 南海地震带 | 3.0 | 7.5 | 2.596 | 0.627 | 0.049 |
表2 中国海域及邻区各地震带的a值、 b值及b值的标准差
Table 2 Parameters including a-value, b-value and the standard deviation of b-value for each seismic zone
地震带编号和名称 | Mmin | Mmax | a值 | b值 | b值标准差 |
---|---|---|---|---|---|
A 华北平原地震带 | 2.0 | 8.0 | 3.845 | 0.867 | 0.008 |
B 郯庐地震带 | 2.0 | 8.5 | 3.836 | 0.840 | 0.007 |
C 长江下游-南黄海地震带 | 2.5 | 7.5 | 3.754 | 0.876 | 0.014 |
D 朝鲜地震带 | 2.5 | 7.5 | 3.671 | 0.910 | 0.017 |
E 东海地震带 | 3.5 | 6.5 | 2.314 | 0.686 | 0.143 |
F 琉球海沟地震带 | 4.0 | 8.5 | 4.601 | 0.739 | 0.017 |
G 华南沿海地震带 | 2.0 | 8.0 | 3.895 | 0.855 | 0.007 |
H 台湾西部地震带 | 4.0 | 8.0 | 3.717 | 0.747 | 0.034 |
I 台湾南-马尼拉海沟地震带 | 4.0 | 8.5 | 4.112 | 0.687 | 0.023 |
J 南海地震带 | 3.0 | 7.5 | 2.596 | 0.627 | 0.049 |
图 4 自适应空间平滑地震活动模型中的学习目录和检测目录划分示意图
Fig. 4 Schematic diagram of the division of learning catalog and test catalog in adaptively smoothed seismicity model.
编号 | 算法 | 学习目录 | 检测目录 | 检测结果 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mmin | t1 | t2 | Ni | Mt | t1 | t2 | Nt | G | RS | bw/km | ||
Model-1 | ASSM | 2.0 | 1 400 | 2 012 | 19 378 | 5.0 | 2 013 | 2 017 | 87 | 4.23 | 0.117 | 210.7 |
Model-2 | ASSM | 3.0 | 1 400 | 2 012 | 5 799 | 5.0 | 2 013 | 2 017 | 87 | 4.21 | 0.126 | 178.3 |
Model-3 | ASSM | 4.0 | 1 400 | 2 012 | 2 264 | 5.0 | 2 013 | 2 017 | 87 | 4.48 | 0.057 | 92.3 |
Model-4 | ASSM | 5.0 | 1 400 | 2 012 | 915 | 5.0 | 2 013 | 2 017 | 87 | 4.08 | 0.135 | 206.0 |
Model-5 | SSM | 2.0 | 1 400 | 2 012 | 19 378 | 5.0 | 2 013 | 2 017 | 87 | 4.04 | Nan | 52.9 |
Model-6 | SSM | 3.0 | 1 400 | 2 012 | 5 799 | 5.0 | 2 013 | 2 017 | 87 | 4.06 | Nan | 59.8 |
Model-7 | SSM | 4.0 | 1 400 | 2 012 | 2 264 | 5.0 | 2 013 | 2 017 | 87 | 4.23 | Nan | 75.0 |
Model-8 | SSM | 5.0 | 1 400 | 2 012 | 915 | 5.0 | 2 013 | 2 017 | 87 | 3.88 | Nan | 75.0 |
表3 不同参数设置下模型预测结果的对比
Table 3 Forecast results for models with different parameter settings
编号 | 算法 | 学习目录 | 检测目录 | 检测结果 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mmin | t1 | t2 | Ni | Mt | t1 | t2 | Nt | G | RS | bw/km | ||
Model-1 | ASSM | 2.0 | 1 400 | 2 012 | 19 378 | 5.0 | 2 013 | 2 017 | 87 | 4.23 | 0.117 | 210.7 |
Model-2 | ASSM | 3.0 | 1 400 | 2 012 | 5 799 | 5.0 | 2 013 | 2 017 | 87 | 4.21 | 0.126 | 178.3 |
Model-3 | ASSM | 4.0 | 1 400 | 2 012 | 2 264 | 5.0 | 2 013 | 2 017 | 87 | 4.48 | 0.057 | 92.3 |
Model-4 | ASSM | 5.0 | 1 400 | 2 012 | 915 | 5.0 | 2 013 | 2 017 | 87 | 4.08 | 0.135 | 206.0 |
Model-5 | SSM | 2.0 | 1 400 | 2 012 | 19 378 | 5.0 | 2 013 | 2 017 | 87 | 4.04 | Nan | 52.9 |
Model-6 | SSM | 3.0 | 1 400 | 2 012 | 5 799 | 5.0 | 2 013 | 2 017 | 87 | 4.06 | Nan | 59.8 |
Model-7 | SSM | 4.0 | 1 400 | 2 012 | 2 264 | 5.0 | 2 013 | 2 017 | 87 | 4.23 | Nan | 75.0 |
Model-8 | SSM | 5.0 | 1 400 | 2 012 | 915 | 5.0 | 2 013 | 2 017 | 87 | 3.88 | Nan | 75.0 |
图 5 不同模型的概率增益函数G随周边地震年发生率RS的变化曲线
Fig. 5 The curves of the probability gain per earthquake(G)versus the annual occurrence rate of surrounding earthquakes(RS)for different models.
图 6 ASSM和SSM的概率增益函数G随输入地震最小震级Mmin变化的曲线
Fig. 6 The curves of the probability gain per earthquake(G)of ASSM or SSM versus the minimum input magnitude(Mmin)of the learning catalog.
[1] | 程佳, 徐锡伟, 陈桂华. 2020. 基于特大地震发生率的川滇地区地震危险性预测新模型[J]. 地球物理学报, 63(3): 1170-1182. |
CHENG Jia, XU Xi-wei, CHEN Gui-hua. 2020. A new prediction model of seismic hazard for the Sichuan-Yunnan region based on the occurrence rate of large earthquakes[J]. Chinese Journal of Geophysics, 63(3): 1170-1182. (in Chinese) | |
[2] | 丁海平, 刘中良, 李燕杰. 2011. 台湾地震对福建地区基岩地震动的影响[J]. 地震工程与工程振动, 31(4): 26-32. |
DING Hai-ping, LIU Zhong-liang, LI Yan-jie. 2011. The effect of Taiwan earthquake on bedrock ground motion of Fujian region[J]. Journal of Earthquake Engineering and Engineering Vibration, 31(4): 26-32. (in Chinese) | |
[3] | 高战武, 缑亚森, 钟慧, 等. 2021. 中国东部海域断裂构造格架与地震活动研究[J]. 震灾防御技术, 16(1): 11-18. |
GAO Zhan-wu, GOU Ya-sen, ZHONG Hui, et al. 2021. Fault structure frame and seismicity in the sea on the east side of Chinese Mainland[J]. Technology for Earthquake Disaster Prevention, 16(1): 11-18. (in Chinese) | |
[4] | 顾功叙编. 1983a. 中国地震目录(1831BC-1969AD)[Z]. 北京: 科学出版社. |
GU Gong-xu(ed). 1983a. Catalogue of Chinese Earthquakes(1831BC-1969AD)[Z]. Science Press, Beijing. (in Chinese) | |
[5] | 顾功叙编. 1983b. 中国地震目录(公元1970-1979年)[Z]. 北京: 地震出版社. |
GU Gong-xu(ed). 1983b. Catalogue of Chinese Earthquakes(1970-1979AD)[Z]. Science Press, Beijing. (in Chinese) | |
[6] | 国家地震局震害防御司编. 1995. 中国历史强震目录(公元前23世纪-公元1911年)[Z]. 北京: 地震出版社. |
Department of Earthquake Disaster Prevention, ed. 1995. State Seismological Bureau(Catalogue of Chinese Historical Strong Earthquakes from the 23rd Century BC to 1911AD [Z]. Seismological Press, Beijing. (in Chinese) | |
[7] | 黄玮琼, 李文香, 曹学锋. 1994. 中国大陆地震资料完整性研究之二: 分区地震资料基本完整的起始年分布图象[J]. 地震学报, 16(4): 423-432. |
HUANG Wei-qiong, LI Wen-xiang, CAO Xue-feng. 1994. Research on the completeness of earthquake data in the Chinese mainland(Ⅱ): The basically complete initial year distribution image of regional seismic data[J]. Acta Seismological Sinica, 16(4): 423-432. (in Chinese) | |
[8] | 黄亦磊, 周仕勇, 庄建仓. 2016. 基于地震目录估计完备震级方法的数值实验[J]. 地球物理学报, 59(4): 1350-1358. |
HUANG Yi-lei, ZHOU Shi-yong, ZHUANG Jian-cang. 2016. Numerical tests on catalog-based methods to estimate magnitude of completeness[J]. Chinese Journal of Geophysics, 59(4): 1350-1358. (in Chinese) | |
[9] | 蒋长胜, 吴忠良, 庄建仓. 2013. 地震的“序列归属”问题与ETAS模型: 以唐山序列为例[J]. 地球物理学报, 56(9): 2971-2981. |
JIANG Chang-sheng, WU Zhong-liang, ZHUANG Jian-cang. 2013. ETAS model applied to the earthquake-sequence association(ESA)problem: The Tangshan sequence[J]. Chinese Journal of Geophysics, 56(9): 2971-2981. (in Chinese) | |
[10] | 李善邦编. 1960. 中国地震目录 [Z]. 北京: 科学出版社. |
LI Shan-bang(ed). 1960. Catalogue of Chinese Earthquakes [Z]. Science Press, Beijing. (in Chinese) | |
[11] | 李小军, 陈苏, 任治坤, 等. 2020. 海域地震区划关键技术研究项目及研究进展[J]. 地震科学进展, 50(1): 2-19. |
LI Xiao-jun, CHEN Su, REN Zhi-kun, et al. 2020. Project plan and research progress on key technologies of seismic zoning in sea areas[J]. Progress in Earthquake Sciences, 50(1): 2-19. (in Chinese) | |
[12] | 林趾祥, 晁洪太. 1999. 加强海域地震研究及其意义[C]. 中国地震学会成立20周年纪念文集: 70-74. |
LIN Zhi-xiang, CHAO Hong-tai. 1999. Strengthening researches on marine seismology and its significance[C]. Anthology of the 20th Anniversary of Seismological Society of China: 70-74. (in Chinese) | |
[13] | 刘光鼎. 1992. 中国海地球物理场和地球动力学特征[J]. 地质学报, 66(4): 300-314. |
LIU Guang-ding. 1992. Features of geophysical fields and geodynamics of the sea areas of China[J]. Acta Geologica Sinica, 66(4): 300-314. (in Chinese) | |
[14] | 潘华, 李金臣. 2006. 地震统计区地震活动性参数b值及ν4不确定性研究[J]. 震灾防御技术, 1(3): 218-224. |
PAN Hua, LI Jin-chen. 2006. Study on uncertainties of seismicity parameters b and ν4 in seismic statistical zones[J]. Technology for Earthquake Disaster Prevention, 1(3): 218-224. (in Chinese) | |
[15] | 潘华, 高孟潭, 谢富仁. 2013. 新版地震区划图地震活动性模型与参数确定[J]. 震灾防御技术, 8(1): 11-23. |
PAN Hua, GAO Meng-tan, XIE Fu-ren. 2013. The earthquake activity model and seismicity parameters in the new seismic hazard map of China[J]. Technology for Earthquake Disaster Prevention, 8(1): 11-23. (in Chinese) | |
[16] | 彭艳菊, 孟小红, 吕悦军, 等. 2008. 我国近海地震活动特征及其与地球物理场的关系[J]. 地球物理学进展, 23(5): 1377-1388. |
PENG Yan-ju, MENG Xiao-hong, LÜ Yue-jun, et al. 2008. The seismicity of China offshore seas and its relationship with geophysical fields[J]. Progress in Geophysics, 23(5): 1377-1388. (in Chinese) | |
[17] | 任雪梅. 2011. 地震区划中b值统计的若干问题研究[D]. 北京: 中国地震局地球物理研究所. |
REN Xue-mei. 2011. Some problems of b-value in seismic zoning[D]. Institute of Geophysics, China Earthquake Administration, Beijing. (in Chinese) | |
[18] | 史翔宇, 王晓青, 邱玉荣, 等. 2020. 川滇地震科学实验场地震目录最小完整性震级分析[J]. 地球物理学报, 63(10): 3683-3697. |
SHI Xiang-yu, WANG Xiao-qing, QIU Yu-rong, et al. 2020. Analysis of the minimum magnitude of completeness for earthquake catalog in China Seismic Experimental Site[J]. Chinese Journal of Geophysics, 63(10): 3683-3697. (in Chinese) | |
[19] | 万永革, 沈正康, 曾跃华, 等. 2008. 唐山地震序列应力触发的黏弹性力学模型研究[J]. 地震学报, 30(6): 581-593. |
WAN Yong-ge, SHEN Zheng-kang, ZENG Yue-hua, et al. 2008. Study on visco-elastic stress triggering model of the 1976 Tangshan earthquake sequence[J]. Acta Seismological Sinica, 30(6): 581-593. (in Chinese) | |
[20] | 王少坡, 罗纲, 史亚男, 等. 2020. 鄂霍次克微板块东部俯冲带区域地震b值及应力场特征[J]. 地球物理学报, 63(4): 1444-1458. |
WANG Shao-po, LUO Gang, SHI Ya-nan, et al. 2020. Seismic b-value and stress field characteristics in the eastern subduction zone of Okhotsk micro-plate[J]. Chinese Journal of Geophysics, 63(4): 1444-1458. (in Chinese) | |
[21] | 吴戈, 刘昌森, 翟文杰, 等. 2001. 黄海及其沿岸历史地震编目与研究[M]. 北京: 地震出版社. |
WU Ge, LIU Chang-sen, ZHAI Wen-jie, et al. 2001. Cataloguing and Research of Historical Earthquakes in the Yellow Sea and Its Coastal Areas[M]. Seismological Press, Beijing. (in Chinese) | |
[22] | 吴果, 周庆, 冉洪流. 2014. 中亚地震目录震级转换及其完整性分析[J]. 震灾防御技术, 9(3): 368-383. |
WU Guo, ZHOU Qing, RAN Hong-liu. 2014. Magnitude conversion of earthquake catalog in central Asia and the completeness analysis[J]. Technology for Earthquake Disaster Prevention, 9(3): 368-383. (in Chinese) | |
[23] |
吴果, 周庆, 冉洪流. 2019. 震级-频度关系中b值的极大似然法估计及其影响因素分析[J]. 地震地质, 41(1): 21-43. doi: 10.3969/j.issn.0253-4967.2019.01.002.
DOI |
WU Guo, ZHOU Qing, RAN Hong-liu. 2019. The maximum likelihood estimation of b-value in magnitude-frequency relation and analysis of its influence factors[J]. Seismology and Geology, 41(1): 21-43. (in Chinese) | |
[24] |
谢卓娟, 李山有, 吕悦军, 等. 2020. 中国海域及邻区统一地震目录及其完整性分析[J]. 地震地质, 42(4): 993-1019. doi: 10.3969/j.issn.0253-4967.2020.04.015.
DOI |
XIE Zhuo-juan, LI Shan-you, LÜ Yue-jun, et al. 2020. Unified earthquake catalog for China’s seas and adjacent regions and its completeness analysis[J]. Seismology and Geology, 42(4): 993-1019. (in Chinese) | |
[25] | 徐伟进, 高孟潭. 2014. 中国大陆及周缘地震目录完整性统计分析[J]. 地球物理学报, 57(9): 2802-2812. |
XU Wei-jin, GAO Meng-tan. 2014. Statistical analysis of the completeness of earthquake catalogs in China mainland[J]. Chinese Journal of Geophysics, 57(9): 2802-2812. (in Chinese) | |
[26] | 臧绍先, 宁杰远. 1996. 西太平洋俯冲带的研究及其动力学意义[J]. 地球物理学报, 39(2): 188-202. |
ZANG Shao-xian, NING Jie-yuan. 1996. Study on the subduction zone in western Pacific and its implication for the geodynamics[J]. Acta Geophysica Sinica, 39(2): 188-202. (in Chinese) | |
[27] | 翟文杰, 吴戈, 韩绍欣. 2004. 朝鲜半岛及其周围地区的历史地震研究[J]. 地震学报, 26(3): 334-339. |
ZHAI Wen-jie, WU Ge, HAN Shao-xin. 2004. The historic earthquake research in the Korean peninsula and its circumference regions[J]. Acta Seismologica Sinica, 26(3): 334-339. (in Chinese) | |
[28] | 张力方, 吕悦军, 兰景岩, 等. 2013. 空间光滑活动模型在东部海域地震危险性评价中的应用[J]. 地震研究, 36(3): 342-351. |
ZHANG Li-fang, LÜ Yue-jun, LAN Jing-yan, et al. 2013. Application of spatially smoothing seismic-activity model on seismic hazard estimation in East China offshore areas[J]. Journal of Seismological Research, 36(3): 342-351. (in Chinese) | |
[29] | 中国地震局震害防御司编. 1999. 中国近代地震目录(公元1912-1990年, MS≥4.7)[Z]. 北京: 中国科学技术出版社. |
Department of Earthquake Disaster Prevention, ed. 1999. China Earthquake Administration(The New Catalogue of Chinese Historical Strong Earthquakes from 1912 to 1990AD[Z]. China Science and Technology Press, Beijing. (in Chinese) | |
[30] | 中央地震工作小组办公室. 1971. 中国地震目录 [Z]. 北京: 科学出版社. |
Central Earthquake Working Group Office. 1971. Earthquake Catalogue of China [Z]. Science Press, Beijing. (in Chinese) | |
[31] |
Akinci A, Moschetti M P, Taroni M. 2018. Ensemble smoothed seismicity models for the new Italian probabilistic seismic hazard map[J]. Seismological Research Letters, 89(4): 1277-1287.
DOI URL |
[32] |
Assatourians K, Atkinson G M. 2019. Implementation of a smoothed-seismicity algorithm in Monte Carlo PSHA Software EqHaz and implications for localization of hazard in the western Canada sedimentary basin[J]. Seismological Research Letters, 90(3): 1407-1419.
DOI |
[33] | Chen Q F, Chen Y, Li L. 2006. China digital seismic network improves coverage and quality[J]. EOS Transactions American Geophysical Union, 87(30): 294-299. |
[34] |
Cheng J, Rong Y, Magistrale H, et al. 2017. An MW-based historical earthquake catalog for Mainland China[J]. Bulletin of the Seismological Society of America, 107(5): 2490-2500.
DOI URL |
[35] |
Feng C, Liu T J, Hong H P. 2020. Seismic hazard assessment for mainland China based on spatially smoothed seismicity[J]. Journal of Seismology, 24(3): 613-633.
DOI URL |
[36] |
Field E H, Arrowsmith R J, Biasi G P, et al. 2014. Uniform California Earthquake Rupture Forecast, version 3(UCERF3): The time-independent model[J]. Bulletin of the Seismological Society of America, 104(3): 1122-1180.
DOI URL |
[37] |
Frankel A. 1995. Mapping seismic hazard in the central and eastern United States[J]. Seismological Research Letters, 66(4): 8-21.
DOI URL |
[38] | Frankel A D, Mueller C S, Barnhard T P, et al. 2000. USGS national seismic hazard maps[J]. Earthquake Spectra, 16(1): 1-19. |
[39] |
Gardner J K, Knopoff L. 1974. Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian?[J]. Bulletin of the Seismological Society of America, 64(5): 1363-1367.
DOI URL |
[40] |
Gutenberg B, Richter C F. 1944. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 34(4): 185-188.
DOI URL |
[41] |
Helmstetter A, Kagan Y, Jackson D D. 2007. High-resolution time-independent grid-based forecast for M≥5 earthquakes in California[J]. Seismological Research Letters, 78(1): 78-86.
DOI URL |
[42] |
Helmstetter A, Werner M J. 2014. Adaptive smoothing of seismicity in time, space, and magnitude for time-dependent earthquake forecasts for California[J]. Bulletin of the Seismological Society of America, 104(2): 809-822.
DOI URL |
[43] |
Kafka A L, Levin S Z. 2000. Does the spatial distribution of smaller earthquakes delineate areas where larger earthquakes are likely to occur?[J]. Bulletin of the Seismological Society of America, 90(3): 724-738.
DOI URL |
[44] |
Kagan Y, Knopoff L. 1977. Earthquake risk prediction as a stochastic process[J]. Physics of the Earth and Planetary Interiors, 14(2): 97-108.
DOI URL |
[45] |
Kagan Y Y, Jackson D D. 2010. Short- and long-term earthquake forecasts for California and Nevada[J]. Pure and Applied Geophysics, 167(6): 685-692.
DOI URL |
[46] |
Karaca H. 2018. Determination of optimum kernel bandwidth for northern Marmara region, Turkey[J]. Acta Geophysica, 66(4): 633-642.
DOI URL |
[47] |
Khodaverdian A, Zafarani H, Rahimian M, et al. 2016. Seismicity parameters and spatially smoothed seismicity model for Iran[J]. Bulletin of the Seismological Society of America, 106(3): 1133-1150.
DOI URL |
[48] |
Li C, Xu W, Wu J, et al. 2017. Time-dependent probabilistic seismic hazard assessment for Taiyuan, Shanxi Province, China, and the surrounding area[J]. Journal of Seismology, 21(4): 749-757.
DOI URL |
[49] |
Matthews M V, Ellsworth W L, Reasenberg P A. 2002. A Brownian model for recurrent earthquakes[J]. Bulletin of the Seismological Society of America, 92(6): 2233-2250.
DOI URL |
[50] |
Moschetti M P. 2015. A long-term earthquake rate model for the central and eastern United States from smoothed seismicity[J]. Bulletin of the Seismological Society of America, 105(6): 2928-2941.
DOI URL |
[51] | Petersen M D, Frankel A D, Harmsen S C, et al. 2008. Documentation for the 2008 update of the United States National Seismic Hazard Maps[R]. US Geological Survey Open-File Report. 2008-1128. |
[52] | Petersen M D, Moschetti M P, Powers P M, et al. 2015. The 2014 United States National Seismic Hazard Model[J]. Earthquake Spectra, 31(S1): S1-S30. |
[53] | Petersen M D, Shumway A M, Powers P M, et al. 2020. The 2018 update of the US National Seismic Hazard Model: Overview of model and implications[J]. Earthquake Spectra, 36(1): 5-41. |
[54] |
Rhoades D A, Christophersen A, Gerstenberger M C, et al. 2018. Highlights from the first ten years of the New Zealand earthquake forecast testing center[J]. Seismological Research Letters, 89(4): 1229-1237.
DOI URL |
[55] |
Rong Y, Xu X, Cheng J, et al. 2020. A probabilistic seismic hazard model for Mainland China[J]. Earthquake Spectra, 36(S1): 181-209.
DOI URL |
[56] | Rong Y, Jackson D D. 2002. Earthquake potential in and around China: Estimated from past earthquakes[J]. Geophysical research letters, 29(16): 27-1-27-4. |
[57] |
Schorlemmer D, Werner M J, Marzocchi W, et al. 2018. The collaboratory for the study of earthquake predictability: Achievements and priorities[J]. Seismological Research Letters, 89(4): 1305-1313.
DOI URL |
[58] |
Strader A, Schneider M, Schorlemmer D. 2017. Prospective and retrospective evaluation of five-year earthquake forecast models for California[J]. Geophysical Journal International, 211(1): 239-251.
DOI URL |
[59] |
Talebi M, Zare M, Peresan A, et al. 2017. Long-term probabilistic forecast for M≥5.0 earthquakes in Iran[J]. Pure and Applied Geophysics, 174(4): 1561-1580.
DOI URL |
[60] |
Taroni M, Marzocchi W, Schorlemmer D, et al. 2018. Prospective CSEP evaluation of 1-day, 3-month, and 5-yr earthquake forecasts for Italy[J]. Seismological Research Letters, 89(4): 1251-1261.
DOI URL |
[61] |
Wang Q, Jackson D D, Kagan Y Y. 2011. California earthquake forecasts based on smoothed seismicity: Model choices[J]. Bulletin of the Seismological Society of America, 101(3): 1422-1430.
DOI URL |
[62] |
Weichert D H. 1980. Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes[J]. Bulletin of the Seismological Society of America, 70(4): 1337-1346.
DOI URL |
[63] | Werner M J, Helmstetter A, Jackson D D, et al. 2010. Adaptively smoothed seismicity earthquake forecasts for Italy[J]. Annals of Geophysics, 53(3): 107-116. |
[64] |
Werner M J, Helmstetter A, Jackson D D, et al. 2011. High resolution long- and short-term earthquake forecasts for California[J]. Bulletin of the Seismological Society of America, 101(4): 1630-1648.
DOI URL |
[65] |
Wiemer S. 2001. A software package to analyze seismicity: ZMAP[J]. Seismological Research Letters, 72(3): 373-382.
DOI URL |
[66] |
Wu G, Zhou Q, Ran H L, et al. 2019. Long-term probabilistic forecast for M≥5.0 earthquakes in the eastern Tibetan plateau from adaptively smoothed seismicity[J]. Bulletin of the Seismological Society of America, 109(3): 1110-1124.
DOI URL |
[67] |
Xie Z J, Li S Y, Lyu Y J, et al. 2021. Empirical relations for conversion of surface- and body-wave magnitudes to moment magnitudes in China’s seas and adjacent areas[J]. Journal of Seismology, 25(1): 213-233.
DOI URL |
[68] |
Xu W J. 2019. Probabilistic seismic hazard assessment using spatially smoothed seismicity in North China seismic zone[J]. Journal of Seismology, 23(3): 613-622.
DOI URL |
[69] |
Yang Y, Shi B P, Sun L. 2008. Seismic hazard estimation based on the distributed seismicity in northern China[J]. Acta Seismologica Sinica, 21(2): 202-212.
DOI URL |
[70] | Zechar J D, Jordan T H. 2010. Simple smoothed seismicity earthquake forecasts for Italy[J]. Annals of Geophysics, 53(3): 99-105. |
[71] |
Zechar J D, Schorlemmer D, Werner M J, et al. 2013. Regional earthquake likelihood models I: First-order results[J]. Bulletin of the Seismological Society of America, 103(2A): 787-798.
DOI URL |
[1] | 谢卓娟, 李山有, 吕悦军, 徐伟进, 张愉玲, 刘雯歆. 中国海域及邻区统一地震目录及其完整性分析[J]. 地震地质, 2020, 42(4): 993-1019. |
[2] | 王凡, 沈正康, 王敏, 王阎昭, 陶玮. 应用统计物理方法分析川滇地区地震危险性[J]. 地震地质, 2013, 35(1): 101-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||