地震地质 ›› 2021, Vol. 43 ›› Issue (6): 1507-1523.DOI: 10.3969/j.issn.0253-4967.2021.06.009
收稿日期:
2020-09-30
修回日期:
2021-01-15
出版日期:
2021-12-20
发布日期:
2022-01-29
通讯作者:
魏占玉
作者简介:
梁子晗, 女, 1996年生, 2018年于云南大学获地质学专业学士学位, 现为中国地震局地质研究所构造地质学专业在读硕士研究生, 主要从事活动构造与构造地貌研究, E-mail: lzhapple@hotmail.com。
基金资助:
LIANG Zi-han(), WEI Zhan-yu(), ZHUANG Qi-tian, SUN Wen, HE Hong-lin
Received:
2020-09-30
Revised:
2021-01-15
Online:
2021-12-20
Published:
2022-01-29
Contact:
WEI Zhan-yu
摘要:
同震地表破裂带的空间展布及形变特征是地球深部断层活动在地表的直观地貌表现, 不但记录着地震破裂和断层运动的信息, 还反映了区域应力和地壳运动状况。因此, 开展震后地震地表破裂带调查对于了解发震断层的构造活动尤为重要。高精度地形观测技术可以获取前所未有的高时空分辨率的地球表面特征, 为辨别历史地震地表破裂遗迹、 提取地表同震位移、 活动构造地质填图等提供高质量数据。文中选取富蕴1931年地震地表破裂带作为研究区, 利用SfM(Structural from Motion)摄影测量技术生成分辨率为1m的数字高程模型(DEM), 详细识别地表破裂并测量冲沟的右旋位移。基于地表破裂的几何及构造地貌特征, 将富蕴地震地表破裂带由北向南分为S1、 S2、 S3、 S4 4段, 其间以挤压隆起或拉分盆地相连接。沿破裂带共获得194组最新冲沟的右旋水平位移, 得到1931年同震位移的平均值为(5.06±0.13)m。同震位移局部缺失或突变的区域与几何阶区的位置也有良好的对应关系。以上结果填补了对富蕴地震地表破裂精细形态研究的空白, 也进一步展示高分辨率的地形数据在活动构造研究中良好的应用价值。
中图分类号:
梁子晗, 魏占玉, 庄其天, 孙稳, 何宏林. 基于高分辨率地形数据的富蕴M8.0地震地表破裂带精细特征[J]. 地震地质, 2021, 43(6): 1507-1523.
LIANG Zi-han, WEI Zhan-yu, ZHUANG Qi-tian, SUN Wen, HE Hong-lin. SEGMENTATION OF SURFACE RUPTURE AND OFFSETS CHARACTERISTICS OF THE FUYUN M8.0 EARTHQUAKE BASED ON HIGH-RESOLUTION TOPOGRAPHIC DATA[J]. SEISMOLOGY AND EGOLOGY, 2021, 43(6): 1507-1523.
图 3 确定1931年富蕴地震的水平同震位移 从现今的冲沟几何形态开始, 在地表破裂两侧分别按数字和字母顺序标记冲沟(a中的白色圈), 利用 “反向恢复”重新排列由于地震而被断开的冲沟(图b), 其中相距最短的2条冲沟(黑色圈)的位移量(黑框数字)为最新事件的位移
Fig. 3 Determination of the coseismic horizontal displacement of the 1931 Fuyun earthquake.
图 9 富蕴地表破裂带的典型鼓包和垄脊 红色箭头指示地表破裂带位置, 红色实线表示地表破裂带解译结果, 黄色实线表示鼓包解译结果; 底图为DEM阴影图
Fig. 9 Typical mole tracks and ridges in Fuyun earthquake surface rupture zone.
图 11 SfM方法生成的DEM与Quickbird卫星影像数据的精度对比 a、 b 分辨率为0.6m的Quickbird卫星影像数据(Klinger et al., 2011), c、 d 本次研究所获得分辨率为1m的DEM数据。其中, 红色实线表示地表破裂带的解译结果, 黄色实线表示冲沟的解译结果; 字母和数字分别为两侧的冲沟编号, 小写字母和罗马数字标号的冲沟为本研究在前人研究基础之上新解译的冲沟
Fig. 11 Data accuracy comparison of the SfM-derived DEM with quickbird satellite image.
发生地震的断裂 | 震级 | 平均同震位移量/m |
---|---|---|
圣安德烈斯断裂(Zielke et al., | MW7.9 | 5.3±1.4 |
海原断裂(Ren et al., | MS8.5 | 约5 |
沂沭断裂带(Jiang et al., | M8.5 | 约9 |
戈壁-阿尔泰断裂(Kurtz et al., | MW8.1 | 3.5±1.3 |
表1 部分地震及其平均同震位移量统计表
Table1 Statistics of some earthquakes and their average coseismic displacements
发生地震的断裂 | 震级 | 平均同震位移量/m |
---|---|---|
圣安德烈斯断裂(Zielke et al., | MW7.9 | 5.3±1.4 |
海原断裂(Ren et al., | MS8.5 | 约5 |
沂沭断裂带(Jiang et al., | M8.5 | 约9 |
戈壁-阿尔泰断裂(Kurtz et al., | MW8.1 | 3.5±1.3 |
图 12 本次测量水平位移值与Klinger等(2011)位移测量值的比较 水平误差线为本次测量的误差, 垂直误差线为Klinger等(2011)测量的误差
Fig. 12 Comparison of the displacement measurements in this study with those acquired by Klinger et al.(2011).
[1] | 艾明, 毕海芸, 郑文俊, 等. 2018. 利用无人机摄影测量技术提取活动构造定量参数[J]. 地震地质, 40(6): 1276-1293. |
AI Ming, BI Hai-yun, ZHENG Wen-jun, et al. 2018. Using unmanned aerial vehicle photogrammetry technology to obtain quantitative parameters of active tectonics[J]. Seismology and Geology, 40(6): 1276-1293(in Chinese). | |
[2] | 安艳芬, 韩竹军, 董绍鹏, 等. 2010. 汶川 MS8.0 地震中央断裂东北端地表破裂特征及其构造含义[J]. 地震地质, 32(1): 1-15. |
AN Yan-fen, HAN Zhu-jun, DONG Shao-peng, et al. 2010. Features and tectonic implications of the northeasternmost surface rupture of Wenchuan MS8.0 earthquake on the Central Fault of Longmenshan fault zone[J]. Seismology and Geology, 32(1): 1-15(in Chinese). | |
[3] | 柏美祥. 2001. 富蕴地震断裂带北部细部结构特征[J]. 内陆地震, 15(2): 97-103. |
BO Mei-xiang. 2001. Detailed structural features in the north of Fuyun earthquake fault zone[J]. Inland Earthquake, 15(2): 97-103(in Chinese). | |
[4] | 柏美祥, 罗福忠, 尹光华, 等. 1996. 新疆可可托海-二台活动断裂带[J]. 内陆地震, 10(4): 319-329. |
BO Mei-xiang, LUO Fu-zhong, YIN Guang-hua, et al. 1996. Kokotokay-Ertai active fault zone in Xinjiang[J]. Inland Earthquake, 10(4): 319-329(in Chinese). | |
[5] | 陈立春, 王虎, 冉勇康, 等. 2010. 玉树 MS7.1 地震地表破裂与历史大地震[J]. 科学通报, 55(13): 1200-1205. |
CHEN Li-chun, WANG Hu, RAN Yong-kang, et al. 2010. The MS7.1 Yushu earthquake surface ruptures and historical earthquakes[J]. Chinese Science Bulletin, 55(13): 1200-1205(in Chinese). | |
[6] |
刘金瑞, 任治坤, 张会平, 等. 2018. 海原断裂带老虎山段晚第四纪滑动速率精确厘定与讨论[J]. 地球物理学报, 61(4): 1281-1297. doi: 10.6038/cj92018L0364.
DOI |
LIU Jin-rui, REN Zhi-kun, ZHANG Hui-ping, et al. 2018. Late Quaternary slip rate of the Laohushan Fault within the Haiyuan fault zone and its tectonic implications[J]. Chinese Journal of Geophysics, 61(4): 1281-1297(in Chinese). | |
[7] | 单新建, 李建华, 马超. 2005. 昆仑山口西 MS8.1 地震地表破裂带高分辨率卫星影像特征研究[J]. 地球物理学报, 48(2): 321-326. |
SHAN Xin-jian, LI Jian-hua, MA Chao. 2005. Study on the feature of surface rupture zone of the west of Kunlunshan Pass earthquake( MS8.1 )with high spatial resolution satellite images[J]. Chinese Journal of Geophysics, 48(2): 321-326(In Chinese). | |
[8] | 魏占玉, Arrowsmith R, 何宏林, 等. 2015. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质, 37(2): 636-648. |
WEI Zhan-yu, Arrowsmith R, HE Hong-lin, et al. 2015. Accuracy analysis of terrain point cloud acquired by “structure from motion” using aerial photos[J]. Seismology and Geology, 37(2): 636-648(in Chinese). | |
[9] | 新疆维吾尔自治区地震局. 1985. 富蕴地震断裂带[M]. 北京: 地震出版社: 1-206. |
Seismological Bureau of Xinjiang Uygur Autonomous Region. 1985. The Fuyun Earthquake Fault Zone in Xinjiang, China[M]. Seismological Press, Beijing: 1-206(in Chinese). | |
[10] | 徐锡伟, 孙鑫喆, 谭锡斌, 等. 2012. 富蕴断裂: 低应变速率条件下断层滑动习性[J]. 地震地质, 34(4): 606-617. |
XU Xi-wei, SUN Xin-zhe, TAN Xi-bin, et al. 2012. Fuyun Fault: Long-term faulting behavior under low crustal strain rate[J]. Seismology and Geology, 34(4): 606-617(in Chinese). | |
[11] | 徐锡伟, 闻学泽, 叶建青, 等. 2008. 汶川 MS8.0 地震地表破裂带及其发震构造[J]. 地震地质, 30(3): 597-629. |
XU Xi-wei, WEN Xue-ze, YE Jian-qing, et al. 2008. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure[J]. Seismology and Geology, 30(3): 597-629(in Chinese). | |
[12] | 徐岳仁, 陈立泽, 申旭辉, 等. 2015. 基于GF-1卫星影像解译2014年新疆于田 MS7.3 地震同震地表破裂带[J]. 地震, 35(2): 61-71. |
XU Yue-ren, CHEN Li-ze, SHEN Xu-hui, et al. 2015. Interpreting coseismic surface rupture zone of the 2014 Yutian MS7.3 earthquake using GF-1 satellite images[J]. Earthquake, 35(2): 61-71(in Chinese). | |
[13] | 张之武. 2009. 新疆阿尔泰山富蕴断裂带几何学与地貌学特征研究[D]. 北京: 中国科学院青藏高原研究所:1-64. |
ZHANG Zhi-wu. 2009. Geometric and geomorphologic features of the Fuyun fault zone in the Altay Mountains, Xinjiang, China [D]. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing: 1-64(in Chinese). | |
[14] | Calais E, Vergnolle M, San'kov V, et al. 2003. GPS measurements of crustal deformation in the Baikal-Mongolia area(1994-2002): Implications for current kinematics of Asia[J]. Journal of Geophysical Research: Solid Earth, 108(B10): 2501-2514. |
[15] |
Chen T, Liu-Zeng J, Shao Y X, et al. 2018. Geomorphic offsets along the creeping Laohu Shan section of the Haiyuan Fault, northern Tibetan plateau[J]. Geosphere, 14(3): 1165-1186.
DOI URL |
[16] | Choi J-H, Jin K, Enkhbayar D, et al. 2012. Rupture propagation inferred from damage patterns, slip distribution, and segmentation of the 1957 MW8.1 Gobi-Altay earthquake rupture along the Bogd Fault, Mongolia[J]. Journal of Geophysical Research Solid Earth, 117(B12): 401-425. |
[17] |
Guo P, Han Z J, Dong S P, et al. 2019. Surface rupture and slip distribution along the Lenglongling Fault in the NE Tibetan plateau: Implications for faulting behavior[J]. Journal of Asian Earth Sciences, 172:190-207.
DOI URL |
[18] |
Harwin S, Lucieer A. 2012. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle(UAV)imagery[J]. Remote Sensing, 4(6): 1573-1599.
DOI URL |
[19] |
Jiang W L, Zhang J F, Han Z J, et al. 2017. Characteristic slip of strong earthquakes along the Yishu fault zone in East China evidenced by offset landforms[J]. Tectonics, 36(10): 1947-1965.
DOI URL |
[20] |
Johnson K, Nissen E, Saripalli S, et al. 2014. Rapid mapping of ultrafine fault zone topography with structure from motion[J]. Geosphere, 10(5): 969-986.
DOI URL |
[21] |
Kang W J, Xu X W, Oskin M E, et al. 2020. Characteristic slip distribution and earthquake recurrence along the eastern Altyn Tagh Fault revealed by high-resolution topographic data[J]. Geosphere, 16(1): 392-406.
DOI URL |
[22] |
Klinger Y, Etchebes M, Tapponnier P, et al. 2011. Characteristic slip for five great earthquakes along the Fuyun Fault in China[J]. Nature Geoscience, 4(6): 389-392.
DOI URL |
[23] |
Kurtz R, Klinger Y, Ferry M, et al. 2018. Horizontal surface-slip distribution through several seismic cycles: The eastern Bogd Fault, Gobi-Altai, Mongolia[J]. Tectonophysics, 734-735:167-182.
DOI URL |
[24] | Ren Z K, Zhang Z Q, Chen T, et al. 2015. Clustering of offsets on the Haiyuan Fault and their relationship to paleoearthquakes[J]. Geological Society of America Bulletin, 128(1-2): 3-18. |
[25] | Tapponnier P, Molnar P. 1979. Active faulting and Cenozoic tectonics of the Tien Shan, Mogolia and Baykal regions[J]. Journal of Geophysical Research: Solid Earth, 84(B7): 3425-3459. |
[26] | Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. |
[27] |
Westoby M J, Brasington J, Glasser N F, et al. 2012. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications[J]. Geomorphology, 179:300-314.
DOI URL |
[28] |
Zielke O, Arrowsmith J R. 2012. LaDiCaoz and LiDAR imager: MATLAB GUIs for LiDAR data handling and lateral displacement measurement[J]. Geosphere, 8(1): 206-221.
DOI URL |
[29] |
Zielke O, Arrowsmith J R, Grant Ludwig L, et al. 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault[J]. Science, 327(5969): 1119-1122.
DOI PMID |
[30] |
Zielke O, Klinger Y, Arrowsmith J R. 2015. Fault slip and earthquake recurrence along strike-slip faults: Contributions of high-resolution geomorphic data[J]. Tectonophysics, 638:43-62.
DOI URL |
[1] | 韩龙飞, 刘静, 姚文倩, 王文鑫, 刘小利, 高云鹏, 邵延秀, 李金阳. 2021年玛多MW7.4地震震中区地表破裂的精细填图及阶区内的分布式破裂讨论[J]. 地震地质, 2022, 44(2): 484-505. |
[2] | 邵延秀, 刘静, 高云鹏, 王文鑫, 姚文倩, 韩龙飞, 刘志军, 邹小波, 王焱, 李云帅, 刘璐. 同震地表破裂的位移测量与弥散变形分析——以2021年青海玛多MW7.4地震为例[J]. 地震地质, 2022, 44(2): 506-523. |
[3] | 李经纬, 陈长云, 占伟, 武艳强. 青海玛多7.4级地震GNSS同震水平位移的快速获取[J]. 地震地质, 2021, 43(5): 1073-1084. |
[4] | 康文君, 徐锡伟, 于贵华, 罗佳宏. 2种基于Matlab平台的断层位移测量软件对比分析--以阿尔金断裂东段为例[J]. 地震地质, 2020, 42(3): 732-747. |
[5] | 邵延秀, 袁道阳, 刘静, Jerome Van der Woerd, 李志刚, 吴磊, 刘方斌. 阿尔金断裂中段南月牙山古地震地表破裂带及其构造意义[J]. 地震地质, 2020, 42(2): 435-454. |
[6] | 郝海健, 何宏林, 魏占玉. 地表破裂的几何结构与同震位移的相关性[J]. 地震地质, 2020, 42(1): 109-124. |
[7] | 尹得余, 刘启方, 刘畅, 季鑫洋. 基于近场强震记录和同震位移的汶川地震破裂过程[J]. 地震地质, 2018, 40(3): 698-717. |
[8] | 吴熙彦, 徐锡伟, 于贵华, 程佳, 陈桂华, 安艳芬, 王启欣. 国家川滇实验场地震地表破裂带分布图编制[J]. 地震地质, 2018, 40(1): 27-41. |
[9] | 李细光, 潘黎黎, 李冰溯, 聂冠军, 吴教兵, 陆俊宏, 严小敏. 广西灵山1936年6¾级地震地表破裂类型与位错特征[J]. 地震地质, 2017, 39(5): 904-916. |
[10] | 徐锡伟, 郭婷婷, 刘少卓, 于贵华, 陈桂华, 吴熙彦. 活动断层避让相关问题的讨论[J]. 地震地质, 2016, 38(3): 477-502. |
[11] | 魏文薪, 江在森, 邹镇宇, 杨永林, 张龙, 武艳强. 芦山“4·20”7.0级地震同震位移场考证及地表变形模式初探[J]. 地震地质, 2014, 36(2): 333-343. |
[12] | 徐锡伟, 谭锡斌, 吴国栋, 陈建波, 沈军, 方伟, 宋和平. 2008年于田MS7.3地震地表破裂带特征及其构造属性讨论[J]. 地震地质, 2011, 33(2): 462-471. |
[13] | 李传友, 魏占玉. 汶川MS 8.0地震地表破裂带北端位置的修订[J]. 地震地质, 2009, 31(1): 1-8. |
[14] | 李传友, 叶建青, 谢富仁, 郑文俊, 韩用兵, 刘玉法, 王伟涛, 魏占玉, 赵冬, 马保起, 任俊杰. 汶川MS8.0地震地表破裂带北川以北段的基本特征[J]. 地震地质, 2008, 30(3): 683-696. |
[15] | 何宏林, 孙昭民, 魏占玉, 董绍鹏, 高翔, 王世元, 王纪强. 汶川MS8.0地震地表破裂带白沙河段破裂及其位移特征[J]. 地震地质, 2008, 30(3): 658-673. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||