地震地质 ›› 2021, Vol. 43 ›› Issue (5): 1233-1249.DOI: 10.3969/j.issn.0253-4967.2021.05.012
收稿日期:
2020-06-30
修回日期:
2020-09-15
出版日期:
2021-10-20
发布日期:
2021-12-06
作者简介:
薛艳, 女, 1969年生, 2012年于中国地震局地球物理研究所获固体地球物理学博士学位, 正研级高级工程师, 现主要从事地震预测研究, 电话: 010-59959328, E-mail: xueyan5619@seis.ac.cn。
基金资助:
XUE Yan1)(), XIE Meng-yu1), LIU Jie1), ZHUANG Jian-cang2)
Received:
2020-06-30
Revised:
2020-09-15
Online:
2021-10-20
Published:
2021-12-06
摘要:
前震是短临地震预报最有效的方法之一。文中系统研究了1976—2017年全球29次MW≥8.0浅源地震的前震特征, 发现: 1)共有8次大地震出现前震, 占总数的27.6%, 且最大前震的震级M>5.0。这8次大地震均为逆冲型, 占逆冲型地震总数(23次)的34.8%; 2)前震序列的空间分布集中, 且集中在主震震中周围。最大前震与主震的震中距为10~53km, 震级差为1.1~2.8级。87.5%的时间差(最大前震与主震的发生时间差)为2h~15d, 仅2006年11月15日千岛群岛8.3级地震前45d发生6.6级最大前震; 3)与背景地震活动相比, 前震具有高频次活动的特点。在8次大地震中, 5次在主震前15d内加速活动; 3次加速活动的开始时间超过1个月(35~45d), 但在主震前1d和6d又再次出现前震频次显著增多的现象; 4)前震的震源机制解与主震一致, 而余震的震源机制解比较复杂; 5)使用ETAS模型计算前震和余震序列的参数α、 p和b值。为了确保参数计算的可靠性, 文中约定当前震序列满足计算样本量N≥30且最低计算震级Mj≥Mc(Mc为最小完备震级)时, 才同时计算前震和余震序列参数。此外, 文中约定余震序列的持续时间为主震后1个月。在8次大地震中, 有4个可以进行对比计算。结果显示, 对于反映激发次级余震能力的α值和序列衰减快慢的p值, 前震和余震没有规律性差异; 而反映应力水平的b值则共性特征明显, 前震b值明显低于余震; 与区域背景b值相比, 前震b值低于区域背景b值的10%~24%。前震b值与区域背景b值之差是区域背景b值标准差的2.2~7.1倍, 具有显著性。而余震b值高于区域背景b值或与其相当。为了讨论前震b值的稳定性, 计算了2个资料丰富的前震序列的b值随样本量的变化。 结果显示, 在前震序列的开始阶段b值较低, 之后逐渐增大, 当计算样本量N≥70后, b值基本稳定。
中图分类号:
薛艳, 解孟雨, 刘杰, 庄建仓. 全球MW≥8.0浅源地震的前震序列研究[J]. 地震地质, 2021, 43(5): 1233-1249.
XUE Yan, XIE Meng-yu, LIU Jie, ZHUANG Jian-cang. STUDY ON FORESHOCK SEQUENCES OF THE GLOBA L GREAT SHALLOW-FOCUS EARTHQUAKES WITH MW≥8.0[J]. SEISMOLOGY AND EGOLOGY, 2021, 43(5): 1233-1249.
序 号 | 主震参数 | 地点 | 主震震源机制解 走向/倾向/倾角 | 前震开始的 日期 | 最大前震 参数 | 震中距 /km | 时间差 | 震级差 | |
---|---|---|---|---|---|---|---|---|---|
节面Ⅰ | 节面Ⅱ | ||||||||
1 | 1976-01-14, M8.2, 33km | 克马德克群岛 海域 | 189°/11°/71° | 28°/80°/93° | 1976-01-01 | 1976-01-01, M6.9, 59km | 20 | 14d | 1.1 |
2 | 1985-03-03, M8.0, 33km | 智利中部近海 | 11°/26°/110° | 169°/66°/81° | 1985-02-21 | 1985-02-21, M5.7, 56km | 10 | 10d | 2.3 |
3 | 1986-05-07, M8.0, 33km | 阿留申群岛 | 246°/22°/85° | 72°/68°/92° | 1986-05-07 | 1986-05-07, M6.3, 22km | 16 | 2h | 1.7 |
4 | 2006-11-15, M8.3, 10km | 千岛群岛 | 215°/15°/92° | 33°/75°/89° | 2006-09-26 | 2006-09-30, M6.6, 11km | 27 | 45d | 1.7 |
5 | 2007-04-01, M8.1, 24km | 所罗门群岛 | 333°/37°/121° | 117°/59°/69° | 2007-03-26 | 2007-03-26, M5.3, 10km | 22 | 5.5d | 2.8 |
6 | 2011-03-11, M9.1, 29km | 日本本州 以东海域 | 203°/10°/88° | 25°/80°/90° | 2011-03-09 | 2011-03-09, M7.3, 32km | 53 | 2d | 1.8 |
7 | 2013-02-06, M8.0, 28km | 圣克鲁斯 群岛 | 320°/20°/89° | 142°/70°/90° | 2013-01-22 | 2013-02-03, M6.4, 10km | 37 | 3d | 1.6 |
8 | 2014-04-01, M8.2, 20km | 智利 北部近海 | 355°/15°/106° | 159°/76°86° | 2014-03-15 | 2014-03-16, M6.7, 20km | 43 | 15d | 1.5 |
表1 8次大地震的主震和最大前震的基本参数、 最大前震与主震的时间差、 震级差等相关统计
Table1 Basic parameters of the 8 great earthquakes and their largest foreshocks, the difference of occurrence time and magnitude between the main shock and the largest foreshock
序 号 | 主震参数 | 地点 | 主震震源机制解 走向/倾向/倾角 | 前震开始的 日期 | 最大前震 参数 | 震中距 /km | 时间差 | 震级差 | |
---|---|---|---|---|---|---|---|---|---|
节面Ⅰ | 节面Ⅱ | ||||||||
1 | 1976-01-14, M8.2, 33km | 克马德克群岛 海域 | 189°/11°/71° | 28°/80°/93° | 1976-01-01 | 1976-01-01, M6.9, 59km | 20 | 14d | 1.1 |
2 | 1985-03-03, M8.0, 33km | 智利中部近海 | 11°/26°/110° | 169°/66°/81° | 1985-02-21 | 1985-02-21, M5.7, 56km | 10 | 10d | 2.3 |
3 | 1986-05-07, M8.0, 33km | 阿留申群岛 | 246°/22°/85° | 72°/68°/92° | 1986-05-07 | 1986-05-07, M6.3, 22km | 16 | 2h | 1.7 |
4 | 2006-11-15, M8.3, 10km | 千岛群岛 | 215°/15°/92° | 33°/75°/89° | 2006-09-26 | 2006-09-30, M6.6, 11km | 27 | 45d | 1.7 |
5 | 2007-04-01, M8.1, 24km | 所罗门群岛 | 333°/37°/121° | 117°/59°/69° | 2007-03-26 | 2007-03-26, M5.3, 10km | 22 | 5.5d | 2.8 |
6 | 2011-03-11, M9.1, 29km | 日本本州 以东海域 | 203°/10°/88° | 25°/80°/90° | 2011-03-09 | 2011-03-09, M7.3, 32km | 53 | 2d | 1.8 |
7 | 2013-02-06, M8.0, 28km | 圣克鲁斯 群岛 | 320°/20°/89° | 142°/70°/90° | 2013-01-22 | 2013-02-03, M6.4, 10km | 37 | 3d | 1.6 |
8 | 2014-04-01, M8.2, 20km | 智利 北部近海 | 355°/15°/106° | 159°/76°86° | 2014-03-15 | 2014-03-16, M6.7, 20km | 43 | 15d | 1.5 |
图 3 8次大地震的前震和余震序列震中分布 a 1976-01-14, 克马德克群岛海域, M8.2; b 1985-03-03, 智利中部近海, M8.0; c 1986-05-07, 阿留申群岛, M8.0; d 2006-11-15, 千岛群岛, M8.3; e 2007-04-01, 所罗门群岛, M8.1; f 2011-03-11, 日本本州近海, M9.1; g 2013-02-06, 圣克鲁斯群岛, M8.0; h 2014-04-01, 智利北部近海, M8.2。红色圆形、 蓝色圆形和黄色五角星分别表示前震、 余震和主震震中; 图中虚线框表示表2中背景b值的计算范围
Fig. 3 Epicenter distribution of foreshock and aftershock sequences of 8 great earthquakes.
图 4 8次大地震的前震和余震序列沿AB剖面(图 3所示)的震中迁移D-t图 a 1976-01-14, 克马德克群岛海域, M8.2; b 1985-03-03, 智利中部近海, M8.0; c 1986-05-07, 阿留申群岛, M8.0; d 2006-11-15, 千岛群岛, M8.3; e 2007-04-01, 所罗门群岛, M8.1; f 2011-03-11, 日本本州近海, M9.1; 2013-02-06, 圣克鲁斯群岛, M8.0; h 2014-04-01, 智利北部近海, M8.2。横坐标为时间t, 以第1次前震发生的时间为零点, 后续地震距离第1次前震的时间间隔为横坐标值, 单位为d; 图中红色空心圆表示主震
Fig. 4 Epicenter migration map in AB direction.
图 5 8次大地震的前震和余震的震源机制解示意图 a 1976-01-14, 克马德克群岛海域, M8.2; b 1985-03-03, 智利中部近海, M8.0; c 1986-05-07, 阿留申群岛, M8.0; d 2006-11-15, 千岛群岛, M8.3; e 2007-04-01, 所罗门群岛, M8.1; f 2011-03-11, 日本本州近海, M9.1; g 2013-02-06, 圣克鲁斯群岛, M8.0; h 2014-04-01, 智利北部近海, M8.2。红色震源球为前震和主震, 蓝色震源球为余震
Fig. 5 Sketch map of focal mechanism solution for earthquake sequence.
图 6 8次大地震主震前180d余震区内最小完备震级以上(M≥Mc)地震的累积频度曲线 横坐标以主震发生时刻为0点, 负值表示主震前
Fig. 6 Cumulative frequency curve of earthquakes with M≥Mc in aftershock area 180 days before 8 main earthquakes.
序号 | 主震 | SQ | b值 | α值 | p值 | Nj | Mj | Mc |
---|---|---|---|---|---|---|---|---|
1 | 2006-11-15, M8.3, 千岛群岛 | F-S | 0.782 1±0.068 9 | 1.834 7±0.294 1 | 1.556 9±0.399 8 | 96 | 4.3 | 4.2 |
0.822 0±0.072 4 | 1.929 6±0.335 4 | 1.732 6±0.511 3 | 84 | 4.4 | ||||
A-S | 1.139 4±0.040 1 | 2.299 6±0.245 4 | 1.455 7±0.247 0 | 545 | 4.4 | 4.4 | ||
余震区及附近背景b值(2000年1月—2006年8月) | 1.085 7±0.063 5 | 190 | 4.4 | 4.4 | ||||
2 | 2011-03-11, M9.1, 日本本州近海 | F-S | 0.749 1±0.099 2 | 2.140 0±0.344 0 | 1.366 3±0.557 6 | 48 | 4.5 | 4.5 |
A-S | 1.281 8±0.025 3 | 1.343 9±0.141 5 | 1.287 8±0.086 3 | 1 625 | 4.5 | 4.5 | ||
余震区及附近背景b值(2003年7月—2010年12月) | 0.894 6±0.023 9 | 460 | 4.5 | 4.3 | ||||
3 | 2013-02-06, M8.0, 圣克鲁斯群岛 | F-S | 0.762 5±0.102 8 | 1.556 3±0.506 9 | 0.911 3±0.173 4 | 46 | 4.4 | 4.4 |
A-S | 0.934 9±0.038 8 | 1.487 2±0.232 4 | 1.797 6±0.283 6 | 480 | 4.4 | 4.3 | ||
余震区及附近背景b值(2000—2012年) | 0.883 6±0.017 1 | 2 017 | 4.4 | 4.4 | ||||
4 | 2014-04-01, M8.2, 智利北部近海 | F-S | 0.813 2±0.065 7 | 2.000 1±0.241 5 | 1.697 3±0.323 7 | 94 | 4.3 | 4.0 |
0.883 3±0.071 4 | 2.097 0±0.322 1 | 1.457 1±0.219 5 | 84 | 4.4 | ||||
A-S | 0.972 3±0.053 1 | 1.083 2±0.159 9 | 1.527 2±0.232 2 | 181 | 4.4 | 4.4 | ||
余震区及附近背景b值(2001—2013年) | 0.984 9±0.046 1 | 277 | 4.4 | 4.4 |
表2 ETAS模型的计算结果
Table2 Results calculated by ETAS model
序号 | 主震 | SQ | b值 | α值 | p值 | Nj | Mj | Mc |
---|---|---|---|---|---|---|---|---|
1 | 2006-11-15, M8.3, 千岛群岛 | F-S | 0.782 1±0.068 9 | 1.834 7±0.294 1 | 1.556 9±0.399 8 | 96 | 4.3 | 4.2 |
0.822 0±0.072 4 | 1.929 6±0.335 4 | 1.732 6±0.511 3 | 84 | 4.4 | ||||
A-S | 1.139 4±0.040 1 | 2.299 6±0.245 4 | 1.455 7±0.247 0 | 545 | 4.4 | 4.4 | ||
余震区及附近背景b值(2000年1月—2006年8月) | 1.085 7±0.063 5 | 190 | 4.4 | 4.4 | ||||
2 | 2011-03-11, M9.1, 日本本州近海 | F-S | 0.749 1±0.099 2 | 2.140 0±0.344 0 | 1.366 3±0.557 6 | 48 | 4.5 | 4.5 |
A-S | 1.281 8±0.025 3 | 1.343 9±0.141 5 | 1.287 8±0.086 3 | 1 625 | 4.5 | 4.5 | ||
余震区及附近背景b值(2003年7月—2010年12月) | 0.894 6±0.023 9 | 460 | 4.5 | 4.3 | ||||
3 | 2013-02-06, M8.0, 圣克鲁斯群岛 | F-S | 0.762 5±0.102 8 | 1.556 3±0.506 9 | 0.911 3±0.173 4 | 46 | 4.4 | 4.4 |
A-S | 0.934 9±0.038 8 | 1.487 2±0.232 4 | 1.797 6±0.283 6 | 480 | 4.4 | 4.3 | ||
余震区及附近背景b值(2000—2012年) | 0.883 6±0.017 1 | 2 017 | 4.4 | 4.4 | ||||
4 | 2014-04-01, M8.2, 智利北部近海 | F-S | 0.813 2±0.065 7 | 2.000 1±0.241 5 | 1.697 3±0.323 7 | 94 | 4.3 | 4.0 |
0.883 3±0.071 4 | 2.097 0±0.322 1 | 1.457 1±0.219 5 | 84 | 4.4 | ||||
A-S | 0.972 3±0.053 1 | 1.083 2±0.159 9 | 1.527 2±0.232 2 | 181 | 4.4 | 4.4 | ||
余震区及附近背景b值(2001—2013年) | 0.984 9±0.046 1 | 277 | 4.4 | 4.4 |
图 8 4次大地震的前震和余震b值(a)、 α值(b)和p值(c)计算结果对比 图件横坐标为地震编号, 与表2序号一致
Fig. 8 Parameters b-value(a), α-value(b)and p-value(c)of foreshocks and aftershocks for 4 great earthquakes.
图 9 2006年千岛群岛8.3级(a)和2014年智利北部近海8.2级(b)地震前震序列的b值随计算样本量的变化 图中直线和虚线表示背景b值及其误差
Fig. 9 Change of b-value with the calculated sample size of foreshock sequences of the 2006-11-15 Kuril Islands M8.3 and the 2014-04-01 off the coast of northern Chile M8.2 earthquake.
[1] | 陈顒. 1978. 用震源机制一致性作为描述地震活动性的新参数[J]. 地球物理学报, 21(2): 142-159. |
CHEN Yong. 1978. Consistency of focal mechanism as a new parameter in describing seismic activity[J]. Chinese Journal of Geophysics, 21(2): 142-159. (in Chinese) | |
[2] | 陈颙, 刘杰, 杨文. 2015. 前震序列的图像特征研究[J]. 中国地震, 31(2): 177-187. |
CHEN Yong, LIU Jie, YANG Wen. 2015. Pattern characteristics of foreshock sequences[J]. Earthquake Research in China, 31(2): 177-187. (in Chinese) | |
[3] | 蒋长胜, 吴忠良, 韩立波, 等. 2013. 地震序列早期参数估计和余震概率预测中截止震级Mc的影响: 以2013年甘肃岷县-漳县6.6级地震为例[J]. 地球物理学报, 56(12): 4048-4057. |
JIANG Chang-sheng, WU Zhong-liang, HAN Li-bo, et al. 2013. Effect of cutoff magnitude Mc of earthquake catalogues on the early estimation of earthquake sequence parameters with implication for the probabilistic forecast of aftershocks: The 2013 Minxian-Zhangxian, Gansu, MS6.6 earthquake sequence[J]. Chinese Journal of Geophysics, 56(12): 4048-4057. | |
[4] | 蒋海昆, 傅正祥, 刘杰, 等. 2007. 中国大陆地震序列研究[M]. 北京: 地震出版社: 1-175. |
JIANG Hai-kun, FU Zheng-xiang, LIU Jie, et al. 2007. Study on Earthquake Sequences in Chinese Mainland[M]. Seismological Press, Beijing: 1-175. (in Chinese) | |
[5] | 李全林, 陈锦标, 于渌, 等. 1978. b值时空扫描: 监视破坏性地震孕育过程的一种手段[J]. 地球物理学报, 21(2): 101-125. |
LI Quan-lin, CHEN Jin-biao, YU Lu, et al. 1978. Time and space scanning of b-value: A method of monitoring the development of catastrophic earthquakes[J]. Chinese Journal of Geophysics, 21(2): 101-125. (in Chinese) | |
[6] | 林邦慧, 李大鹏, 刘杰, 等. 1994. 前震和前震序列的研究[J]. 地震学报, 16(S1): 24-38. |
LIN Bang-hui, LI Da-peng, LIU Jie, et al. 1994. Study on foreshock and foreshock sequence[J]. Acta Seismologica Sinica, 16(S1): 24-38. (in Chinese) | |
[7] |
刘方斌, 曲均浩, 李亚军, 等. 2018. 山东乳山地震序列震源机制解一致性参数特征[J]. 地震地质, 40(5): 1086-1099. doi: 10.3969/j.issn.0253-4967.2018.05.009.
DOI |
LIU Fang-bin, QU Jun-hao, LI Ya-jun, et al. 2018. Research on characteristics of the focal mechanism solutions consistency of Rushan earthquake sequence, Shandong Province[J]. Seismology and Geology, 40(5): 1086-1099. (in Chinese) | |
[8] | 吕晓健, 高孟潭, 陈丹. 2010. 全球大陆7级浅源大地震强余震震级和空间分布特征[J]. 地震, 30(3): 108-122. |
LÜ Xiao-jian, GAO Meng-tan, CHEN Dan. 2010. Magnitude and distance distribution characteristics of strong aftershocks in continents of the world[J]. Earthquake, 30(3): 108-122. (in Chinese) | |
[9] | 倪四道, 王伟涛, 李丽. 2010. 2010年4月14日玉树地震: 一个有前震的破坏性地震[J]. 中国科学(D辑), 40(5): 535-537. |
NI Si-dao, WANG Wei-tao, LI Li. 2010. The April 14th, 2010 Yushu earthquake, a devastating earthquake with foreshocks[J]. Science in China(Ser D), 40(5): 535-537. (in Chinese) | |
[10] | 宋俊高, 陆远忠, 施玉芳, 等. 1989. 地震预报方法实用化研究文集:地震学专辑. 北京: 学术出版社: 204-228. |
SONG Jun-gao, LU Yuan-zhong, SHI Yu-fang, et al. 1989. Study on the practical program of earthquake swarm for earthquake prediction[G]//Science and Technology Monitoring Department of China Earthquake Administration(ed). Collected Works on Practical Research of Earthquake Prediction Methods: The Seismological Methods. Academic Press. Beijing: 204-228. (in Chinese) | |
[11] | 苏有锦, 李忠华, 赵小艳, 等. 2014. 全球7级以上地震序列研究[M]. 昆明: 云南大学出版社. |
SU You-jin, LI Zhong-hua, ZHAO Xiao-yan, et al. 2014. Study on the Global Earthquake Sequences with M≥7.0[M]. Yunnan University Press, Kunming. (in Chinese) | |
[12] | 苏有锦, 赵小艳. 2008. 全球8级地震序列研究[J]. 地震研究, 31(4): 308-316. |
SU You-jin, ZHAO Xiao-yan. 2008. Characteristics of global earthquake sequences with MW≥8.0[J]. Journal of Seismological Research, 31(4): 308-316. (in Chinese) | |
[13] | 王亮, 黄金水, 焦明若, 等. 2015. 盖州震群的重新定位[J]. 中国地震, 31(2): 439-446. |
WANG Liang, HUANG Jin-shui, JIAO Ming-ruo, et al. 2015. Accurate relocation of earthquake swarm in Gaizhou, Liaoning, China[J]. Earthquake Research in China, 31(2): 439-446. (in Chinese) | |
[14] | 吴果, 周庆, 冉洪流. 2019. 震级-频度关系中b值的极大似然法估计及其影响因素分析[J]. 地震地质, 41(1): 21-43. |
WU Guo, ZHOU Qing, RAN Hong-liu. 2019. The maximum likelihood estimation of b-value in magnitude-frequency relation and analysis of its influencing factors[J]. Seismology and Geology, 41(1): 21-43. (in Chinese) | |
[15] | 易桂喜, 闻学泽, 辛华, 等. 2013. 龙门山断裂带南段应力状态与强震危险性研究[J]. 地球物理学报, 56(4): 1112-1120. |
YI Gui-xi, WEN Xue-ze, XIN Hua, et al. 2013. Stress state and major-earthquake risk on the southern segment of the Longmen Shan fault zone[J]. Chinese Journal of Geophysics, 56(4): 1112-1120. (in Chinese) | |
[16] | Aki K. 1965. Maximum likelihood estimate of b in the formula logN=a-bM and its confidence limits[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 43(2): 237-239. |
[17] |
Bender B. 1983. Maximum likelihood estimation of b-value for magnitude grouped data[J]. Bulletin of the Seismological Society of America, 73(3): 831-851.
DOI URL |
[18] |
Chen X, Shearer P M. 2013. California foreshock sequences suggest aseismic triggering process[J]. Geophysical Research Letters, 40(11): 2602-2607.
DOI URL |
[19] |
Chen X, Shearer P M. 2015. Analysis of foreshock sequences in California and implications for earthquake triggering[J]. Pure and Applied Geophysics, 173(1): 133-152.
DOI URL |
[20] | Daley D D, Vere-Jones D. 2003. An Introduction to the Theory of Point Processes: Volume1: Elementary Theory and Methods [M]. Second Edition. Springer, New York: 17-33. |
[21] |
Brodsky E E, Lay T. 2014. Recognizing foreshocks from the 1 April 2014 Chile earthquake[J]. Science, 344(6185): 700-702.
DOI PMID |
[22] |
Gulia L, Wiemer S. 2019. Real-time discrimination of earthquake foreshocks and aftershocks[J]. Nature, 574(7777): 193-199.
DOI URL |
[23] |
Huang Q H. 2006. Search for reliable precursors: A case study of the seismic quiescence of the 2000 western Tottori Prefecture earthquake[J]. Journal of Geophysical Research: Solid Earth, 111(B4): B04301. doi: 10.1029/2005JB003982.
DOI |
[24] |
Iwata T. 2008. Low detection capability of global earthquakes after the occurrence of large earthquakes: Investigation of the Harvard CMT catalogue[J]. Geophysical Journal International, 174(3): 849-856.
DOI URL |
[25] |
Jones L M, Molnar P. 1979. Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults[J]. Journal of Geophysical Research, 84(B7): 3596-3608.
DOI URL |
[26] |
Meredith N, Göran E, Howard C K. 2011. Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku earthquake and its larger foreshocks and aftershocks[J]. Earth Planets Space, 63(2): 519-523.
DOI URL |
[27] |
Ogata Y. 1988. Statistical models for earthquake occurrences and residual analysis for point processes[J]. Journal of American Statistical Association, 83(401): 9-27.
DOI URL |
[28] |
Ogata Y. 1989. Statistical model for standard seismicity and detection of anomalies by residual analysis[J]. Tectonophysics, 169(1-3): 159-174.
DOI URL |
[29] | Ogata Y. 1992. Detection of precursory relative quiescence before great earthquakes through a statistical model[J]. Journal of Geophysical Research: Solid Earth, 97(B13): 19845-19871. |
[30] |
Scholz C H. 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquake[J]. Bulletin of the Seismological Society of America, 58(1): 399-415.
DOI URL |
[31] |
Shi Y, Bolt B A. 1982. The standard error of the magnitude-frequency b-value[J]. Bulletin of the Seismological Society of America, 72(5): 1677-1687.
DOI URL |
[32] |
Smith W D. 1981. The b-value as an earthquake precursor[J]. Nature, 289(5794): 136-139.
DOI URL |
[33] |
Urbancic T I, Trifu C I, Long J M, et al. 1992. Space-time correlation of b values with stress release[J]. Pure and Applied Geophysics, 139(3): 449-462.
DOI URL |
[34] | Utsu T. 1961. A statistical study on the occurrence of aftershocks[J]. The Geophysical Magazine, 30: 521-605. |
[35] |
Utsu T. 1966. A statistical significance test of the difference in b-value between two earthquake groups[J]. Journal of Physics of the Earth, 14(2): 37-40.
DOI URL |
[36] | Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. |
[37] | Wiemer S, Wyss M. 2002. Mapping spatial variability of the frequency-magnitude distribution of earthquakes[J]. Advances in Geophysics, 45(7): 259-302. |
[38] |
Wyss M, Wiemer S. 2000. Change in the probability for earthquakes in southern California due to the Landers magnitude 7.3 earthquake[J]. Science, 290(5495): 1334-1338.
PMID |
[39] | Wyss M. 1973. Towards a physical understanding of the earthquake frequency distribution[J]. Geophysical Journal of the Royal Astronomical Society, 31(4): 341-359. |
[40] |
Xue Y, Liu J, Yu H Z, et al. 2012. Seismicity characteristics of the 2011 M 9.1 Tohoku earthquake near the east coast of Honshu in Japan[J]. Chinese Science Bulletin, 57(8): 886-893.
DOI URL |
[1] | 姜丛, 蒋长胜, 尹欣欣, 王蕊嘉, 翟鸿宇, 张延保, 来贵娟, 尹凤玲. 水力压裂诱发地震活动中的b值时空异质性及其应用[J]. 地震地质, 2022, 44(5): 1333-1349. |
[2] | 陈丽娟, 陈学忠, 李艳娥, 龚丽文. b值下降幅度与汶川MS8.0 地震孕震区的关系[J]. 地震地质, 2022, 44(4): 1046-1058. |
[3] | 梁姗姗, 徐志国, 张广伟, 邹立晔, 刘艳琼, 郭铁龙. 2021年云南漾濞MS6.4地震震源区断层系统的几何复杂性[J]. 地震地质, 2021, 43(4): 827-846. |
[4] | 王凯英, 金明培, 黄雅, 党文杰, 李文涛, 卓燕群, 何昌荣. 2021年5月21日云南漾濞MS6.4地震序列的时空演化[J]. 地震地质, 2021, 43(4): 1030-1039. |
[5] | 易桂喜, 闻学泽, 张致伟, 龙锋, 阮祥, 杜方. 川南马边地区强震危险性分析[J]. 地震地质, 2010, 32(2): 282-293. |
[6] | 雷兴林, 佐藤隆司, 西泽修. 花岗岩变形破坏的阶段性模型——应力速度及预存微裂纹密度对断层形成过程的影响[J]. 地震地质, 2004, 26(3): 436-449. |
[7] | 陈顺云, 许昭永, 杨润海, 赵晋明. 含V形构造花岗岩块体破坏过程中的声发射特征[J]. 地震地质, 2003, 25(2): 317-326. |
[8] | 刘力强, 马胜利, 马瑾, 扈小燕, 刘天昌, 吴秀泉. 不同结构岩石标本声发射b值和频谱的时间扫描及其物理意义[J]. 地震地质, 2001, 23(4): 481-492. |
[9] | 曾正文, 马瑾, 刘力强, 刘天昌. 岩石破裂扩展过程中的声发射b值动态特征及意义[J]. 地震地质, 1995, 17(1): 7-12. |
[10] | 焦文捷, 马瑾, 吴秀泉, 刘力强. 围压下岩石破坏声发射测试系统及震级频度关系的实验研究[J]. 地震地质, 1991, 13(1): 54-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||