地震地质 ›› 2021, Vol. 43 ›› Issue (5): 1101-1126.DOI: 10.3969/j.issn.0253-4967.2021.05.005
• 云南漾濞6.4级地震与青海玛多7.4级地震研究专题 • 上一篇 下一篇
路畅1,2)(), 周晓成2),*(), 李营2), 刘磊3), 颜玉聪2), 徐岳仁2)
收稿日期:
2021-06-15
修回日期:
2021-07-21
出版日期:
2021-10-20
发布日期:
2021-12-06
通讯作者:
周晓成
作者简介:
路畅, 男, 1993年生, 2016年于吉林大学获地质学专业学士学位, 现为中国地震局地球物理研究所固体地球物理专业在读博士研究生, 主要从事与地震、 构造相关的水文与气体地球化学等研究, 电话: 15901252713, E-mail: cealuchang@163.com。
基金资助:
LU Chang1,2)(), ZHOU Xiao-cheng2),*(), LI Ying2), LIU Lei3), YAN Yu-cong2), XU Yue-ren2)
Received:
2021-06-15
Revised:
2021-07-21
Online:
2021-10-20
Published:
2021-12-06
Contact:
ZHOU Xiao-cheng
摘要:
泉水与地震活动密切相关, 断裂带内的泉水地下水可反映许多断裂内部的水-岩反应、 构造活动等信息。2021年5月22日玛多县发生MS7.4地震后1d, 从本次地震形成的地表破裂带内仍然在喷砂冒水的点和东昆仑断裂内的温泉采集了21个水化学样品, 以及4个震后喷砂冒水点中的砂土样品。文中分析了泉水及砂土的来源与特征, 讨论了地表破裂带与东昆仑断裂附近泉水的差异性。结果表明: 1)21个泉水的TDS范围为113.2~1 264.6mg/L, 水化学类型为Ca·Mg-HCO3、 Ca·Mg·Na-HCO3、 Ca-HCO3、 Na·Ca·Mg-HCO3·Cl、 Ca·Na·Mg-HCO3·SO4、 Ca·Na·Mg-HCO3·SO4和Ca·Na-HCO3, 水-岩反应程度弱。2)地表破裂带内靠近震中的泉水存在异常氢同位素值(δD=-59‰), 且Na+、 Cl-、$SO^{2-}_{4}$等离子出现高值。3)东昆仑断裂带附近泉水中的Li含量(最大值为2 014μg/L)远大于地表破裂带周围的泉水中的含量(6.56~43.0μg/L); 而地表破裂带周围泉水中的Pb、 Ba、 Cu、 Zn等金属微量元素更富集。4)泉水的来源为大气降水, 地表破裂带附近的泉水有周围水体混入, 东昆仑断裂带内的温泉水循环深度大, 断裂切割更深, 有更多深部元素的补给。未来对东昆仑断裂内温泉水文地球化学开展监测与深入研究, 对判断东昆仑断裂的地震危险性具有重要意义。文中在讨论震后水化学的响应以及巴颜喀拉中段水化学特征与来源的同时, 也填补了区域内地下水背景场的空缺。
中图分类号:
路畅, 周晓成, 李营, 刘磊, 颜玉聪, 徐岳仁. 玛多MS7.4 地表破裂带与东昆仑断裂温泉的水文地球化学特征[J]. 地震地质, 2021, 43(5): 1101-1126.
LU Chang, ZHOU Xiao-cheng, LI Ying, LIU Lei, YAN Yu-cong, XU Yue-ren. HYDROGEOCHEMICAL CHARACTERISTICS OF GROUND-WATER IN THE SURFACE RUPTURE ZONE OF MADOI MS7.4 EARTHQUAKE AND HOT SPRINGS IN THE EAST KUNLUN FAULT[J]. SEISMOLOGY AND EGOLOGY, 2021, 43(5): 1101-1126.
图 1 研究区及周边的大地震、 活动断裂与采样点图 a 巴颜喀拉块体的地理位置及其周缘7级以上(1997年后)大地震分布(修改自Tapponnier et al., 2001); b 玛多地震及泉水、 喷砂冒水采样点分布(断裂数据自邓起东等, 2003)
Fig. 1 Diagram showing big earthquakes, active faults and sampling points in the study region and its surrounding areas.
图 2 玛多7.4级地震后地表破裂带附近样品的野外采集 a、 b 震后砂土液化图, 比例尺12cm×28cm; c、 d 野外样品采集图
Fig. 2 Samples collection in the surface rupture zone after the MS7.4 earthquake in Madoi.
样品 编号 | T /℃ | 东经 /(°) | 北纬 /(°) | pH | 电导率 /μs· cm-1 | TDS /mg· L-1 | Na+ /mg· L-1 | K+ /mg· L-1 | Mg2+ /mg· L-1 | Ca2+ /mg· L-1 | Cl- /mg· L-1 | /mg· L-1 | /mg· L-1 | /mg· L-1 | HC /mg· L-1 | ib /% | 87Sr/86Sr | 水化学类型 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MDW1 | 8 | 98.086 | 34.675 | 8.1 | 426.7 | 407.8 | 21.5 | 2.2 | 18.4 | 58.6 | 15.5 | 15.6 | 17.0 | — | 258.9 | 0.73 | 0.712 315 | Ca·Mg-HCO3 |
MDW2 | 5 | 98.522 | 34.470 | 7.7 | 200.3 | 207.8 | 6.9 | 2.3 | 10.3 | 26.6 | 4.3 | 0.2 | 4.2 | — | 153.0 | -1.66 | 0.711 197 | Ca·Mg-HCO3 |
MDW3 | 5 | 98.262 | 34.634 | 8.1 | 865.2 | 847.7 | 51 | 4.1 | 40.0 | 125.3 | 32.8 | 3.4 | 78.2 | — | 512.8 | 1.95 | 0.711 292 | Ca·Mg-HCO3 |
MDW4 | 8 | 98.018 | 34.694 | 8.3 | 560.4 | 467.0 | 38.3 | 2.2 | 24.8 | 59.3 | 21.8 | 13.7 | 32.9 | 31.7 | 242.4 | 0.62 | 0.711 293 | Ca·Mg-HCO3 |
MDW5 | 8 | 98.006 | 34.695 | 8.2 | 521.3 | 475.3 | 33.5 | 2.2 | 20.2 | 62.7 | 18.6 | 5.8 | 26.2 | — | 306.0 | 0.44 | 0.711 326 | Ca·Mg·Na-HCO3 |
MDW6 | 5 | 97.932 | 34.718 | 8.3 | 639.9 | 649.3 | 38.3 | 3.0 | 28.1 | 94.4 | 25.8 | 12.1 | 67.9 | — | 379.7 | 0.63 | 0.710 724 | Ca·Mg-HCO3 |
MDW7 | 6 | 97.625 | 34.750 | 8.2 | 440 | 447.2 | 16.0 | 2.2 | 13.7 | 75.0 | 14.0 | 3.0 | 16.3 | — | 306.9 | -0.85 | 0.710 828 | Ca-HCO3 |
MDW8 | 6 | 98.830 | 34.542 | 8.1 | 656.8 | 595.6 | 24.9 | 6.5 | 49.2 | 62.3 | 24.6 | — | 7.4 | 22.8 | 397.9 | 0.82 | 0.710 879 | Ca·Mg-HCO3 |
MDW9 | 11 | 98.466 | 34.466 | 8.2 | 716.4 | 522.2 | 59.4 | 3.3 | 31.3 | 54.5 | 74.9 | 0.5 | 34.2 | 38.2 | 225.8 | 0.58 | 0.710 748 | Na·Ca·Mg-HCO3·Cl |
MDW10 | 3 | 98.432 | 34.572 | 8.1 | 339.8 | 325.0 | 10.7 | 2.4 | 21.9 | 37.3 | 8.1 | 3.2 | 9.7 | — | 221.7 | 0.39 | 0.711 77 | Ca·Mg-HCO3 |
MDW11 | 5 | 98.233 | 34.643 | 8.2 | 464.8 | 429.6 | 23.1 | 2.0 | 19.8 | 62.7 | 15.8 | 7.7 | 17.7 | 29.3 | 241.5 | -0.22 | 0.711 773 | Ca·Mg-HCO3 |
MDW12 | 4.5 | 99.289 | 34.985 | 8.1 | 865.7 | 1071.1 | 18.3 | 2.1 | 44.1 | 145.4 | 31.1 | 5.4 | 207.5 | 67.0 | 397.0 | 0.45 | 0.708 718 | Ca·Na·Mg-HCO3·SO4 |
MDW13 | 10 | 100.310 | 34.441 | 8.1 | 694.5 | 472.0 | 24.8 | 1.7 | 37.7 | 100.7 | 8.7 | 1.1 | 74.6 | 47.0 | 440.0 | 2.45 | 0.715 374 | Ca·Na·Mg-HCO3 |
MDW14 | 4.5 | 100.556 | 34.357 | 8.2 | 349.8 | 113.2 | 5.5 | 1.6 | 13.6 | 65.7 | 0.5 | 4.8 | 6.6 | — | 300.0 | 2.03 | 0.712 455 | Ca·Na-HCO3 |
MDW15 | 6.5 | 101.132 | 34.242 | 7.9 | 464.3 | 187.4 | 7.4 | 1.2 | 20.2 | 100.9 | 0.4 | 2.4 | 14.3 | — | 508.0 | -0.56 | 0.718 426 | Ca·Na-HCO3 |
MDW16 | 9.5 | 101.488 | 34.182 | 7.8 | 470 | 165.0 | 6.5 | 1.5 | 9.8 | 124.3 | 2.2 | 8.6 | 5.2 | — | 497.0 | 1.01 | 0.707 998 | Ca·Na-HCO3 |
MDW17 | 9 | 102.266 | 34.015 | 8.0 | 460.2 | 141.2 | 5.2 | 0.8 | 19.9 | 95.5 | 0.5 | 4.0 | 4.8 | — | 406.0 | 3.97 | 0.708 728 | Ca·Na·Mg-HCO3 |
MDW18 | 4.5 | 102.389 | 34.024 | 7.9 | 509.4 | 140.3 | 9.4 | 1.3 | 26.8 | 100.9 | 1.1 | — | 0.9 | — | 574.0 | -0.41 | 0.715 199 | Ca·Na·Mg-HCO3 |
MDW19 | 12 | 102.458 | 34.019 | 8.0 | 445.9 | 142.5 | 3.5 | 0.8 | 21.4 | 76.3 | 0.4 | 0.6 | 10.0 | 23.0 | 397.0 | -0.72 | 0.708 887 | Ca·Na·Mg-HCO3 |
MDW20 | 28 | 102.680 | 34.035 | 8.0 | 441.2 | 149.3 | 4.0 | 1.4 | 17.9 | 86.7 | 0.3 | 0.7 | 10.0 | 24.0 | 432.0 | -1.91 | 0.711 761 | Ca·Na-HCO3 |
MDW21 | 49 | 102.783 | 34.203 | 7.6 | 1201 | 1264.6 | 44.6 | 7.0 | 66.5 | 226.4 | 1.5 | 0.4 | 229.7 | — | 1083.0 | -0.75 | 0.708 718 | Ca·Na·Mg-HCO3 |
表1 泉水的离子组分、 水化学类型和 87Sr/86Sr
Table1 Spring water ion composition, hydrochemistry type and 87Sr/86Sr
样品 编号 | T /℃ | 东经 /(°) | 北纬 /(°) | pH | 电导率 /μs· cm-1 | TDS /mg· L-1 | Na+ /mg· L-1 | K+ /mg· L-1 | Mg2+ /mg· L-1 | Ca2+ /mg· L-1 | Cl- /mg· L-1 | /mg· L-1 | /mg· L-1 | /mg· L-1 | HC /mg· L-1 | ib /% | 87Sr/86Sr | 水化学类型 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MDW1 | 8 | 98.086 | 34.675 | 8.1 | 426.7 | 407.8 | 21.5 | 2.2 | 18.4 | 58.6 | 15.5 | 15.6 | 17.0 | — | 258.9 | 0.73 | 0.712 315 | Ca·Mg-HCO3 |
MDW2 | 5 | 98.522 | 34.470 | 7.7 | 200.3 | 207.8 | 6.9 | 2.3 | 10.3 | 26.6 | 4.3 | 0.2 | 4.2 | — | 153.0 | -1.66 | 0.711 197 | Ca·Mg-HCO3 |
MDW3 | 5 | 98.262 | 34.634 | 8.1 | 865.2 | 847.7 | 51 | 4.1 | 40.0 | 125.3 | 32.8 | 3.4 | 78.2 | — | 512.8 | 1.95 | 0.711 292 | Ca·Mg-HCO3 |
MDW4 | 8 | 98.018 | 34.694 | 8.3 | 560.4 | 467.0 | 38.3 | 2.2 | 24.8 | 59.3 | 21.8 | 13.7 | 32.9 | 31.7 | 242.4 | 0.62 | 0.711 293 | Ca·Mg-HCO3 |
MDW5 | 8 | 98.006 | 34.695 | 8.2 | 521.3 | 475.3 | 33.5 | 2.2 | 20.2 | 62.7 | 18.6 | 5.8 | 26.2 | — | 306.0 | 0.44 | 0.711 326 | Ca·Mg·Na-HCO3 |
MDW6 | 5 | 97.932 | 34.718 | 8.3 | 639.9 | 649.3 | 38.3 | 3.0 | 28.1 | 94.4 | 25.8 | 12.1 | 67.9 | — | 379.7 | 0.63 | 0.710 724 | Ca·Mg-HCO3 |
MDW7 | 6 | 97.625 | 34.750 | 8.2 | 440 | 447.2 | 16.0 | 2.2 | 13.7 | 75.0 | 14.0 | 3.0 | 16.3 | — | 306.9 | -0.85 | 0.710 828 | Ca-HCO3 |
MDW8 | 6 | 98.830 | 34.542 | 8.1 | 656.8 | 595.6 | 24.9 | 6.5 | 49.2 | 62.3 | 24.6 | — | 7.4 | 22.8 | 397.9 | 0.82 | 0.710 879 | Ca·Mg-HCO3 |
MDW9 | 11 | 98.466 | 34.466 | 8.2 | 716.4 | 522.2 | 59.4 | 3.3 | 31.3 | 54.5 | 74.9 | 0.5 | 34.2 | 38.2 | 225.8 | 0.58 | 0.710 748 | Na·Ca·Mg-HCO3·Cl |
MDW10 | 3 | 98.432 | 34.572 | 8.1 | 339.8 | 325.0 | 10.7 | 2.4 | 21.9 | 37.3 | 8.1 | 3.2 | 9.7 | — | 221.7 | 0.39 | 0.711 77 | Ca·Mg-HCO3 |
MDW11 | 5 | 98.233 | 34.643 | 8.2 | 464.8 | 429.6 | 23.1 | 2.0 | 19.8 | 62.7 | 15.8 | 7.7 | 17.7 | 29.3 | 241.5 | -0.22 | 0.711 773 | Ca·Mg-HCO3 |
MDW12 | 4.5 | 99.289 | 34.985 | 8.1 | 865.7 | 1071.1 | 18.3 | 2.1 | 44.1 | 145.4 | 31.1 | 5.4 | 207.5 | 67.0 | 397.0 | 0.45 | 0.708 718 | Ca·Na·Mg-HCO3·SO4 |
MDW13 | 10 | 100.310 | 34.441 | 8.1 | 694.5 | 472.0 | 24.8 | 1.7 | 37.7 | 100.7 | 8.7 | 1.1 | 74.6 | 47.0 | 440.0 | 2.45 | 0.715 374 | Ca·Na·Mg-HCO3 |
MDW14 | 4.5 | 100.556 | 34.357 | 8.2 | 349.8 | 113.2 | 5.5 | 1.6 | 13.6 | 65.7 | 0.5 | 4.8 | 6.6 | — | 300.0 | 2.03 | 0.712 455 | Ca·Na-HCO3 |
MDW15 | 6.5 | 101.132 | 34.242 | 7.9 | 464.3 | 187.4 | 7.4 | 1.2 | 20.2 | 100.9 | 0.4 | 2.4 | 14.3 | — | 508.0 | -0.56 | 0.718 426 | Ca·Na-HCO3 |
MDW16 | 9.5 | 101.488 | 34.182 | 7.8 | 470 | 165.0 | 6.5 | 1.5 | 9.8 | 124.3 | 2.2 | 8.6 | 5.2 | — | 497.0 | 1.01 | 0.707 998 | Ca·Na-HCO3 |
MDW17 | 9 | 102.266 | 34.015 | 8.0 | 460.2 | 141.2 | 5.2 | 0.8 | 19.9 | 95.5 | 0.5 | 4.0 | 4.8 | — | 406.0 | 3.97 | 0.708 728 | Ca·Na·Mg-HCO3 |
MDW18 | 4.5 | 102.389 | 34.024 | 7.9 | 509.4 | 140.3 | 9.4 | 1.3 | 26.8 | 100.9 | 1.1 | — | 0.9 | — | 574.0 | -0.41 | 0.715 199 | Ca·Na·Mg-HCO3 |
MDW19 | 12 | 102.458 | 34.019 | 8.0 | 445.9 | 142.5 | 3.5 | 0.8 | 21.4 | 76.3 | 0.4 | 0.6 | 10.0 | 23.0 | 397.0 | -0.72 | 0.708 887 | Ca·Na·Mg-HCO3 |
MDW20 | 28 | 102.680 | 34.035 | 8.0 | 441.2 | 149.3 | 4.0 | 1.4 | 17.9 | 86.7 | 0.3 | 0.7 | 10.0 | 24.0 | 432.0 | -1.91 | 0.711 761 | Ca·Na-HCO3 |
MDW21 | 49 | 102.783 | 34.203 | 7.6 | 1201 | 1264.6 | 44.6 | 7.0 | 66.5 | 226.4 | 1.5 | 0.4 | 229.7 | — | 1083.0 | -0.75 | 0.708 718 | Ca·Na·Mg-HCO3 |
样品编号 | SiO2 | Al2O3 | Fe203 | MgO | CaO | Na2O | K2O | MnO | TiO2 | P2O5 | 烧失量 | FeO |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MDN01 | 82.38 | 6.00 | 2.05 | 0.645 | 2.750 | 1.39 | 0.982 | 0.030 | 0.340 | 0.065 | 3.36 | 1.06 |
MDN02 | 61.71 | 10.96 | 5.24 | 1.210 | 4.730 | 1.56 | 1.930 | 0.102 | 0.526 | 0.117 | 11.90 | 4.52 |
MDN03 | 88.28 | 5.35 | 1.77 | 0.514 | 0.410 | 1.31 | 0.798 | 0.011 | 0.217 | 0.042 | 1.29 | 1.20 |
MDN04 | 87.20 | 5.76 | 1.80 | 0.519 | 0.607 | 1.43 | 0.839 | 0.015 | 0.254 | 0.048 | 1.51 | 1.09 |
表2 砂土颗粒的氧化物百分含量(wt%)
Table2 Percentage of oxides in sand particles(wt%)
样品编号 | SiO2 | Al2O3 | Fe203 | MgO | CaO | Na2O | K2O | MnO | TiO2 | P2O5 | 烧失量 | FeO |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MDN01 | 82.38 | 6.00 | 2.05 | 0.645 | 2.750 | 1.39 | 0.982 | 0.030 | 0.340 | 0.065 | 3.36 | 1.06 |
MDN02 | 61.71 | 10.96 | 5.24 | 1.210 | 4.730 | 1.56 | 1.930 | 0.102 | 0.526 | 0.117 | 11.90 | 4.52 |
MDN03 | 88.28 | 5.35 | 1.77 | 0.514 | 0.410 | 1.31 | 0.798 | 0.011 | 0.217 | 0.042 | 1.29 | 1.20 |
MDN04 | 87.20 | 5.76 | 1.80 | 0.519 | 0.607 | 1.43 | 0.839 | 0.015 | 0.254 | 0.048 | 1.51 | 1.09 |
样品编号 | Ca /μg·L-1 | Mg /μg·L-1 | Ag /μg·L-1 | Al /μg·L-1 | Ba /μg·L-1 | Be /μg·L-1 | Cd /μg·L-1 | Co /μg·L-1 | Cr /μg·L-1 | Cu /μg·L-1 | Fe /μg·L-1 | Li /μg·L-1 | Mn /μg·L-1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MDW1 | 123.0 | 25.1 | 0.017 | 2284.0 | 202.0 | 0.634 | 0.258 | 7.460 | 5.740 | 102.0 | 6.180 | 21.90 | 1 322.0 |
MDW2 | 27.4 | 10.4 | 0.022 | 82.8 | 176.0 | 0.097 | 0.082 | 0.226 | 2.300 | 86.5 | 0.232 | 6.56 | 14.8 |
MDW3 | 111.0 | 39.7 | 0.020 | 672.0 | 215.0 | 0.180 | 0.075 | 2.250 | 2.880 | 89.5 | 1.980 | 35.60 | 499.0 |
MDW4 | 53.0 | 24.8 | 0.007 | 40.8 | 29.7 | 0.072 | 0.030 | 0.275 | 1.320 | 79.9 | 0.128 | 21.00 | 14.1 |
MDW5 | 58.1 | 21.1 | 0.011 | 571.0 | 64.4 | 0.200 | 0.063 | 1.150 | 2.350 | 75.5 | 0.871 | 22.50 | 43.3 |
MDW6 | 110.0 | 30.3 | 0.020 | 1930.0 | 177.0 | 0.456 | 0.200 | 6.080 | 5.860 | 92.2 | 8.120 | 26.70 | 582.0 |
MDW7 | 68.7 | 14.3 | 0.009 | 191.0 | 209.0 | 0.106 | 0.086 | 0.753 | 1.700 | 83.1 | 2.000 | 15.30 | 255.0 |
MDW8 | 54.4 | 48.7 | 0.015 | 189.0 | 416.0 | 0.036 | 0.053 | 1.440 | 2.730 | 89.8 | 2.960 | 43.00 | 211.0 |
MDW9 | 51.0 | 30.9 | 0.006 | 216.0 | 100.0 | 0.092 | 0.037 | 0.389 | 1.810 | 77.4 | 0.492 | 27.20 | 39.5 |
MDW10 | 36.8 | 20.0 | 0.007 | 229.0 | 179.0 | 0.086 | 0.061 | 0.405 | 3.320 | 107.0 | 0.652 | 10.90 | 15.9 |
MDW11 | 60.9 | 20.7 | 0.003 | 342.0 | 95.3 | 0.143 | 0.030 | 1.060 | 2.010 | 76.4 | 1.710 | 16.90 | 87.7 |
MDW12 | 75.8 | 15.2 | 0.003 | 14.6 | 96.8 | 3.620 | 0.014 | 0.300 | 1.040 | 17.5 | 0.014 | 1 145.00 | 9.7 |
MDW13 | 64.2 | 6.1 | <0.002 | 6.5 | 66.0 | 1.540 | <0.002 | 0.295 | 0.867 | 21.1 | 0.062 | 1 324.00 | 117.0 |
MDW14 | 35.7 | 4.6 | 0.003 | 42.3 | 50.5 | 23.700 | 0.029 | 0.353 | 1.480 | 23.5 | 0.051 | 795.00 | 137.0 |
MDW15 | 12.7 | 1.0 | <0.002 | 13.1 | 8.3 | 0.131 | 0.018 | 0.057 | 0.442 | 13.7 | 0.045 | 232.00 | 9.8 |
MDW16 | 37.7 | 3.4 | <0.002 | 5.7 | 51.3 | 0.929 | 0.033 | 0.142 | 0.532 | 15.8 | 0.045 | 1 172.00 | 32.0 |
MDW17 | 443.0 | 56.5 | 0.005 | 36.9 | 33.2 | 0.725 | 0.038 | 1.520 | 0.635 | 18.9 | 0.039 | 200.00 | 32.4 |
MDW18 | 47.0 | 7.0 | 0.004 | 6.1 | 85.5 | 1.180 | 0.066 | 0.223 | 0.716 | 15.4 | 0.012 | 573.00 | 488.0 |
MDW19 | 53.9 | 8.4 | 0.003 | 10.9 | 107.0 | 6.220 | 0.041 | 0.231 | 1.220 | 18.8 | 0.137 | 1 631.00 | 75.5 |
MDW20 | 67.5 | 8.0 | 0.002 | 6.1 | 53.2 | 0.886 | 0.008 | 0.412 | 3.570 | 19.7 | 0.027 | 2 047.00 | 34.1 |
MDW21 | 336.0 | 30.7 | 0.003 | 2.0 | 29.9 | 0.683 | 0.049 | 1.600 | 1.650 | 25.8 | 0.023 | 217.00 | 139.0 |
样品编号 | Mo /μg·L-1 | Ni /μg·L-1 | Pb /μg·L-1 | Sb /μg·L-1 | Sn /μg·L-1 | Sr /μg·L-1 | Th /μg·L-1 | Ti /μg·L-1 | Tl /μg·L-1 | U /μg·L-1 | V /μg·L-1 | Zn /μg·L-1 | B /μg·L-1 |
MDW1 | 0.334 | 23.20 | 24.000 | 0.269 | 1.610 | 705 | 0.536 | 44.50 | 0.063 | 3.830 | 8.230 | 344.0 | 61.1 |
MDW2 | 0.308 | 4.05 | 1.740 | 0.203 | 1.390 | 249 | 0.013 | 1.64 | 0.007 | 1.230 | 0.556 | 334.0 | 42.2 |
MDW3 | 1.530 | 19.90 | 6.280 | 1.270 | 1.310 | 1043 | 0.207 | 12.90 | 0.017 | 14.300 | 3.970 | 346.0 | 219.0 |
MDW4 | 1.550 | 4.89 | 1.090 | 0.097 | 1.110 | 560 | 0.004 | 1.98 | 0.007 | 4.640 | 0.689 | 275.0 | 194.0 |
MDW5 | 0.506 | 6.48 | 3.760 | 0.194 | 1.160 | 568 | 0.066 | 7.83 | 0.013 | 3.270 | 1.640 | 302.0 | 165.0 |
MDW6 | 0.291 | 23.30 | 18.400 | 0.434 | 1.630 | 717 | 0.448 | 29.30 | 0.032 | 5.530 | 9.340 | 341.0 | 142.0 |
MDW7 | 1.000 | 7.34 | 2.510 | 0.425 | 1.470 | 438 | 0.065 | 5.30 | 0.005 | 2.190 | 1.210 | 306.0 | 63.1 |
MDW8 | 1.450 | 10.10 | 3.470 | 0.834 | 1.750 | 830 | 0.065 | 7.75 | 0.009 | 1.660 | 2.970 | 305.0 | 74.6 |
MDW9 | 0.806 | 8.63 | 2.800 | 0.230 | 1.350 | 488 | 0.014 | 3.96 | 0.009 | 2.180 | 2.080 | 279.0 | 203.0 |
MDW10 | 0.644 | 4.38 | 3.340 | 0.121 | 1.400 | 500 | 0.039 | 5.05 | 0.013 | 2.020 | 0.876 | 345.0 | 25.9 |
MDW11 | 0.463 | 5.79 | 4.410 | 0.173 | 1.230 | 489 | 0.072 | 5.77 | 0.007 | 3.670 | 2.170 | 288.0 | 114.0 |
MDW12 | 1.130 | 5.85 | 0.147 | 14.100 | 0.369 | 988 | <0.002 | 10.50 | 1.210 | 6.740 | 6.350 | 80.2 | 2 029.0 |
MDW13 | 0.255 | 6.49 | 0.797 | 12.200 | 0.525 | 975 | <0.002 | 8.19 | 0.201 | 0.139 | 0.554 | 136.0 | 1 483.0 |
MDW14 | 5.240 | 5.01 | 0.169 | 6.040 | 0.426 | 2396 | 0.003 | 9.58 | 0.271 | 0.259 | 1.040 | 83.9 | 4.2 |
MDW15 | 1.740 | 1.31 | 0.131 | 0.861 | 0.425 | 127 | <0.002 | 6.02 | 0.010 | 0.529 | 0.402 | 50.0 | 215.0 |
MDW16 | 15.000 | 4.28 | 1.060 | 2.530 | 0.588 | 881 | <0.002 | 11.40 | 0.525 | 0.078 | 0.605 | 62.9 | 852.0 |
MDW17 | 1.660 | 33.20 | 0.150 | 19.700 | 0.356 | 12534 | 0.002 | 4.87 | 0.053 | 0.386 | 0.288 | 106.0 | 8.7 |
MDW18 | 0.168 | 4.08 | 0.147 | 0.241 | 0.495 | 254 | <0.002 | 12.00 | 0.030 | 0.159 | 0.725 | 79.7 | 70.7 |
MDW19 | 0.538 | 4.68 | 0.160 | 4.840 | 0.536 | 1364 | 0.009 | 11.80 | 1.060 | 0.203 | 0.970 | 75.1 | 2 385.0 |
MDW20 | 0.226 | 8.06 | 0.221 | 51.900 | 0.556 | 2754 | <0.002 | 6.29 | 0.010 | 0.139 | 1.980 | 74.2 | 18 330.0 |
MDW21 | 1.040 | 23.50 | 0.117 | 0.464 | 0.434 | 9662 | <0.002 | 3.77 | 0.087 | 0.405 | 10.500 | 218.0 | 64.0 |
表3 泉水中的微量元素
Table3 Trace elements of spring water samples
样品编号 | Ca /μg·L-1 | Mg /μg·L-1 | Ag /μg·L-1 | Al /μg·L-1 | Ba /μg·L-1 | Be /μg·L-1 | Cd /μg·L-1 | Co /μg·L-1 | Cr /μg·L-1 | Cu /μg·L-1 | Fe /μg·L-1 | Li /μg·L-1 | Mn /μg·L-1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MDW1 | 123.0 | 25.1 | 0.017 | 2284.0 | 202.0 | 0.634 | 0.258 | 7.460 | 5.740 | 102.0 | 6.180 | 21.90 | 1 322.0 |
MDW2 | 27.4 | 10.4 | 0.022 | 82.8 | 176.0 | 0.097 | 0.082 | 0.226 | 2.300 | 86.5 | 0.232 | 6.56 | 14.8 |
MDW3 | 111.0 | 39.7 | 0.020 | 672.0 | 215.0 | 0.180 | 0.075 | 2.250 | 2.880 | 89.5 | 1.980 | 35.60 | 499.0 |
MDW4 | 53.0 | 24.8 | 0.007 | 40.8 | 29.7 | 0.072 | 0.030 | 0.275 | 1.320 | 79.9 | 0.128 | 21.00 | 14.1 |
MDW5 | 58.1 | 21.1 | 0.011 | 571.0 | 64.4 | 0.200 | 0.063 | 1.150 | 2.350 | 75.5 | 0.871 | 22.50 | 43.3 |
MDW6 | 110.0 | 30.3 | 0.020 | 1930.0 | 177.0 | 0.456 | 0.200 | 6.080 | 5.860 | 92.2 | 8.120 | 26.70 | 582.0 |
MDW7 | 68.7 | 14.3 | 0.009 | 191.0 | 209.0 | 0.106 | 0.086 | 0.753 | 1.700 | 83.1 | 2.000 | 15.30 | 255.0 |
MDW8 | 54.4 | 48.7 | 0.015 | 189.0 | 416.0 | 0.036 | 0.053 | 1.440 | 2.730 | 89.8 | 2.960 | 43.00 | 211.0 |
MDW9 | 51.0 | 30.9 | 0.006 | 216.0 | 100.0 | 0.092 | 0.037 | 0.389 | 1.810 | 77.4 | 0.492 | 27.20 | 39.5 |
MDW10 | 36.8 | 20.0 | 0.007 | 229.0 | 179.0 | 0.086 | 0.061 | 0.405 | 3.320 | 107.0 | 0.652 | 10.90 | 15.9 |
MDW11 | 60.9 | 20.7 | 0.003 | 342.0 | 95.3 | 0.143 | 0.030 | 1.060 | 2.010 | 76.4 | 1.710 | 16.90 | 87.7 |
MDW12 | 75.8 | 15.2 | 0.003 | 14.6 | 96.8 | 3.620 | 0.014 | 0.300 | 1.040 | 17.5 | 0.014 | 1 145.00 | 9.7 |
MDW13 | 64.2 | 6.1 | <0.002 | 6.5 | 66.0 | 1.540 | <0.002 | 0.295 | 0.867 | 21.1 | 0.062 | 1 324.00 | 117.0 |
MDW14 | 35.7 | 4.6 | 0.003 | 42.3 | 50.5 | 23.700 | 0.029 | 0.353 | 1.480 | 23.5 | 0.051 | 795.00 | 137.0 |
MDW15 | 12.7 | 1.0 | <0.002 | 13.1 | 8.3 | 0.131 | 0.018 | 0.057 | 0.442 | 13.7 | 0.045 | 232.00 | 9.8 |
MDW16 | 37.7 | 3.4 | <0.002 | 5.7 | 51.3 | 0.929 | 0.033 | 0.142 | 0.532 | 15.8 | 0.045 | 1 172.00 | 32.0 |
MDW17 | 443.0 | 56.5 | 0.005 | 36.9 | 33.2 | 0.725 | 0.038 | 1.520 | 0.635 | 18.9 | 0.039 | 200.00 | 32.4 |
MDW18 | 47.0 | 7.0 | 0.004 | 6.1 | 85.5 | 1.180 | 0.066 | 0.223 | 0.716 | 15.4 | 0.012 | 573.00 | 488.0 |
MDW19 | 53.9 | 8.4 | 0.003 | 10.9 | 107.0 | 6.220 | 0.041 | 0.231 | 1.220 | 18.8 | 0.137 | 1 631.00 | 75.5 |
MDW20 | 67.5 | 8.0 | 0.002 | 6.1 | 53.2 | 0.886 | 0.008 | 0.412 | 3.570 | 19.7 | 0.027 | 2 047.00 | 34.1 |
MDW21 | 336.0 | 30.7 | 0.003 | 2.0 | 29.9 | 0.683 | 0.049 | 1.600 | 1.650 | 25.8 | 0.023 | 217.00 | 139.0 |
样品编号 | Mo /μg·L-1 | Ni /μg·L-1 | Pb /μg·L-1 | Sb /μg·L-1 | Sn /μg·L-1 | Sr /μg·L-1 | Th /μg·L-1 | Ti /μg·L-1 | Tl /μg·L-1 | U /μg·L-1 | V /μg·L-1 | Zn /μg·L-1 | B /μg·L-1 |
MDW1 | 0.334 | 23.20 | 24.000 | 0.269 | 1.610 | 705 | 0.536 | 44.50 | 0.063 | 3.830 | 8.230 | 344.0 | 61.1 |
MDW2 | 0.308 | 4.05 | 1.740 | 0.203 | 1.390 | 249 | 0.013 | 1.64 | 0.007 | 1.230 | 0.556 | 334.0 | 42.2 |
MDW3 | 1.530 | 19.90 | 6.280 | 1.270 | 1.310 | 1043 | 0.207 | 12.90 | 0.017 | 14.300 | 3.970 | 346.0 | 219.0 |
MDW4 | 1.550 | 4.89 | 1.090 | 0.097 | 1.110 | 560 | 0.004 | 1.98 | 0.007 | 4.640 | 0.689 | 275.0 | 194.0 |
MDW5 | 0.506 | 6.48 | 3.760 | 0.194 | 1.160 | 568 | 0.066 | 7.83 | 0.013 | 3.270 | 1.640 | 302.0 | 165.0 |
MDW6 | 0.291 | 23.30 | 18.400 | 0.434 | 1.630 | 717 | 0.448 | 29.30 | 0.032 | 5.530 | 9.340 | 341.0 | 142.0 |
MDW7 | 1.000 | 7.34 | 2.510 | 0.425 | 1.470 | 438 | 0.065 | 5.30 | 0.005 | 2.190 | 1.210 | 306.0 | 63.1 |
MDW8 | 1.450 | 10.10 | 3.470 | 0.834 | 1.750 | 830 | 0.065 | 7.75 | 0.009 | 1.660 | 2.970 | 305.0 | 74.6 |
MDW9 | 0.806 | 8.63 | 2.800 | 0.230 | 1.350 | 488 | 0.014 | 3.96 | 0.009 | 2.180 | 2.080 | 279.0 | 203.0 |
MDW10 | 0.644 | 4.38 | 3.340 | 0.121 | 1.400 | 500 | 0.039 | 5.05 | 0.013 | 2.020 | 0.876 | 345.0 | 25.9 |
MDW11 | 0.463 | 5.79 | 4.410 | 0.173 | 1.230 | 489 | 0.072 | 5.77 | 0.007 | 3.670 | 2.170 | 288.0 | 114.0 |
MDW12 | 1.130 | 5.85 | 0.147 | 14.100 | 0.369 | 988 | <0.002 | 10.50 | 1.210 | 6.740 | 6.350 | 80.2 | 2 029.0 |
MDW13 | 0.255 | 6.49 | 0.797 | 12.200 | 0.525 | 975 | <0.002 | 8.19 | 0.201 | 0.139 | 0.554 | 136.0 | 1 483.0 |
MDW14 | 5.240 | 5.01 | 0.169 | 6.040 | 0.426 | 2396 | 0.003 | 9.58 | 0.271 | 0.259 | 1.040 | 83.9 | 4.2 |
MDW15 | 1.740 | 1.31 | 0.131 | 0.861 | 0.425 | 127 | <0.002 | 6.02 | 0.010 | 0.529 | 0.402 | 50.0 | 215.0 |
MDW16 | 15.000 | 4.28 | 1.060 | 2.530 | 0.588 | 881 | <0.002 | 11.40 | 0.525 | 0.078 | 0.605 | 62.9 | 852.0 |
MDW17 | 1.660 | 33.20 | 0.150 | 19.700 | 0.356 | 12534 | 0.002 | 4.87 | 0.053 | 0.386 | 0.288 | 106.0 | 8.7 |
MDW18 | 0.168 | 4.08 | 0.147 | 0.241 | 0.495 | 254 | <0.002 | 12.00 | 0.030 | 0.159 | 0.725 | 79.7 | 70.7 |
MDW19 | 0.538 | 4.68 | 0.160 | 4.840 | 0.536 | 1364 | 0.009 | 11.80 | 1.060 | 0.203 | 0.970 | 75.1 | 2 385.0 |
MDW20 | 0.226 | 8.06 | 0.221 | 51.900 | 0.556 | 2754 | <0.002 | 6.29 | 0.010 | 0.139 | 1.980 | 74.2 | 18 330.0 |
MDW21 | 1.040 | 23.50 | 0.117 | 0.464 | 0.434 | 9662 | <0.002 | 3.77 | 0.087 | 0.405 | 10.500 | 218.0 | 64.0 |
位置 | 样品编号 | δD/‰ | δ18O/‰ | 式(2) | 式(3) | 式(4) | 平均值/km |
---|---|---|---|---|---|---|---|
地表破裂带 | MDW1 | -90.3 | -12.6 | 2.1 | 2.3 | 2.1 | 2.2 |
MDW2 | -75.1 | -19.0 | 1.6 | 1.7 | 4.1 | 2.5 | |
MDW3 | -79.1 | -10.2 | 1.7 | 1.9 | 1.3 | 1.6 | |
MDW4 | -87.4 | -11.8 | 2.0 | 2.2 | 1.8 | 2.0 | |
MDW5 | -89.4 | -12.0. | 2.1 | 2.3 | 1.9 | 2.1 | |
MDW6 | -90.5 | -12.3 | 2.1 | 2.3 | 2.0 | 2.1 | |
MDW7 | -87.0 | -12.0 | 2.0 | 2.2 | 1.9 | 2.0 | |
MDW8 | -84.6 | -10.1 | 1.9 | 2.1 | 1.3 | 1.8 | |
MDW9 | -59.0 | -7.3 | 1.1 | 1.1 | 0.4 | 0.8 | |
MDW10 | -98.4 | -13.0 | 2.4 | 2.6 | 2.2 | 2.4 | |
MDW11 | -91.9 | -12.6 | 2.2 | 2.4 | 2.1 | 2.2 | |
东昆仑断裂带 | MDW12 | -88.2 | -12.1 | 2.0 | 2.2 | 1.9 | 2.1 |
MDW13 | -82.1 | -10.9 | 1.8 | 2.0 | 1.5 | 1.8 | |
MDW14 | -87.0 | -10.8 | 2.0 | 2.2 | 1.5 | 1.9 | |
MDW15 | -79.7 | -10.5 | 1.8 | 1.9 | 1.4 | 1.7 | |
MDW16 | -87.0 | -11.5 | 2.0 | 2.2 | 1.7 | 2.0 | |
MDW17 | -96.6 | -12.4 | 2.3 | 2.6 | 2.0 | 2.3 | |
MDW18 | -106.2 | -13.7 | 2.6 | 2.9 | 2.4 | 2.7 | |
MDW19 | -104.7 | -13.7 | 2.6 | 2.9 | 2.4 | 2.6 | |
MDW20 | -99.6 | -13.0 | 2.4 | 2.7 | 2.2 | 2.4 | |
MDW21 | -107.3 | -14.4 | 2.7 | 3.0 | 2.6 | 2.8 |
表4 氢氧同位素以及补给高程
Table4 H and O isotopes and supply elevation.
位置 | 样品编号 | δD/‰ | δ18O/‰ | 式(2) | 式(3) | 式(4) | 平均值/km |
---|---|---|---|---|---|---|---|
地表破裂带 | MDW1 | -90.3 | -12.6 | 2.1 | 2.3 | 2.1 | 2.2 |
MDW2 | -75.1 | -19.0 | 1.6 | 1.7 | 4.1 | 2.5 | |
MDW3 | -79.1 | -10.2 | 1.7 | 1.9 | 1.3 | 1.6 | |
MDW4 | -87.4 | -11.8 | 2.0 | 2.2 | 1.8 | 2.0 | |
MDW5 | -89.4 | -12.0. | 2.1 | 2.3 | 1.9 | 2.1 | |
MDW6 | -90.5 | -12.3 | 2.1 | 2.3 | 2.0 | 2.1 | |
MDW7 | -87.0 | -12.0 | 2.0 | 2.2 | 1.9 | 2.0 | |
MDW8 | -84.6 | -10.1 | 1.9 | 2.1 | 1.3 | 1.8 | |
MDW9 | -59.0 | -7.3 | 1.1 | 1.1 | 0.4 | 0.8 | |
MDW10 | -98.4 | -13.0 | 2.4 | 2.6 | 2.2 | 2.4 | |
MDW11 | -91.9 | -12.6 | 2.2 | 2.4 | 2.1 | 2.2 | |
东昆仑断裂带 | MDW12 | -88.2 | -12.1 | 2.0 | 2.2 | 1.9 | 2.1 |
MDW13 | -82.1 | -10.9 | 1.8 | 2.0 | 1.5 | 1.8 | |
MDW14 | -87.0 | -10.8 | 2.0 | 2.2 | 1.5 | 1.9 | |
MDW15 | -79.7 | -10.5 | 1.8 | 1.9 | 1.4 | 1.7 | |
MDW16 | -87.0 | -11.5 | 2.0 | 2.2 | 1.7 | 2.0 | |
MDW17 | -96.6 | -12.4 | 2.3 | 2.6 | 2.0 | 2.3 | |
MDW18 | -106.2 | -13.7 | 2.6 | 2.9 | 2.4 | 2.7 | |
MDW19 | -104.7 | -13.7 | 2.6 | 2.9 | 2.4 | 2.6 | |
MDW20 | -99.6 | -13.0 | 2.4 | 2.7 | 2.2 | 2.4 | |
MDW21 | -107.3 | -14.4 | 2.7 | 3.0 | 2.6 | 2.8 |
地表破裂带附近泉水 | 东昆仑断裂带附近泉水 | ||
---|---|---|---|
样品编号 | 震中距/km | 样品编号 | 震中距/km |
MDW1 | 25.1 | MDW12 | 97.2 |
MDW2 | 21.4 | MDW13 | 181.3 |
MDW3 | 8.6 | MDW14 | 204.8 |
MDW4 | 31.6 | MDW15 | 259.1 |
MDW5 | 32.7 | MDW16 | 292.4 |
MDW6 | 40.0 | MDW17 | 366.2 |
MDW7 | 67.8 | MDW18 | 377.1 |
MDW8 | 45.2 | MDW19 | 383.5 |
MDW9 | 18.0 | MDW20 | 403.3 |
MDW10 | 8.6 | MDW21 | 409.9 |
MDW11 | 11.5 |
表5 采样点的震中距
Table5 Distance between sampling points and epicenter
地表破裂带附近泉水 | 东昆仑断裂带附近泉水 | ||
---|---|---|---|
样品编号 | 震中距/km | 样品编号 | 震中距/km |
MDW1 | 25.1 | MDW12 | 97.2 |
MDW2 | 21.4 | MDW13 | 181.3 |
MDW3 | 8.6 | MDW14 | 204.8 |
MDW4 | 31.6 | MDW15 | 259.1 |
MDW5 | 32.7 | MDW16 | 292.4 |
MDW6 | 40.0 | MDW17 | 366.2 |
MDW7 | 67.8 | MDW18 | 377.1 |
MDW8 | 45.2 | MDW19 | 383.5 |
MDW9 | 18.0 | MDW20 | 403.3 |
MDW10 | 8.6 | MDW21 | 409.9 |
MDW11 | 11.5 |
[1] | 苌有全, 张富强, 李广军, 等. 2011. 青海省玛多县九龙滩矿泉水形成机制初探[J]. 青海科技, 18(2): 69-70. |
CHANG You-quan, ZHANG Fu-qiang, LI Guang-jun, et al. 2011. Formation mechanism of Jiulongtan mineral water in Maduo County, Qinghai Province[J]. Qinghai Science and Technology, 18(2): 69-70. (in Chinese) | |
[2] | 陈有炘, 裴先治, 李佐臣, 等. 2015. 东昆仑东段巴隆花岗质片麻岩年代学、 地球化学特征及地质意义[J]. 岩石学报, 31(8): 2230-2244. |
CHEN You-xin, PEI Xian-zhi, LI Zuo-chen, et al. 2015. Geochronology, geochemical features and geological significance of the granitic gneiss in Balong area, east section of East Kunlun[J]. Acta Petrologica Sinica, 31(8): 2230-2244. (in Chinese) | |
[3] | 邓起东, 高翔, 陈桂华, 等. 2010. 青藏高原昆仑-汶川地震系列与巴颜喀喇断块的最新活动[J]. 地学前缘, 17(5): 163-178. |
DENG Qi-dong, GAO Xiang, CHEN Gui-hua, et al. 2010. Recent tectonic activity of Bayankala fault-block and the Kunlun-Wenchuan earthquake series of the Tibetan plateau[J]. Earth Science Frontiers, 17(5): 163-178. (in Chinese) | |
[4] | 邓起东, 张培震, 冉勇康, 等. 2003. 中国活动构造与地震活动[J]. 地学前缘, 10(S1): 66-73. |
DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang, et al. 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers, 10(S1): 66-73. (in Chinese) | |
[5] | 丰成友, 王松, 李国臣, 等. 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、 地球化学及成矿意义[J]. 岩石学报, 28(2): 665-678. |
FENG Cheng-you, WANG Song, LI Guo-chen, et al. 2012. Middle to Late Triassic granitoids in the Qimantage area, QinghaiProvince, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 28(2): 665-678. (in Chinese) | |
[6] | 高建飞, 丁悌平, 罗续荣, 等. 2011. 黄河水氢、 氧同位素组成的空间变化特征及其环境意义[J]. 地质学报, 85(4): 596-602. |
GAO Jian-fei, DING Ti-ping, LUO Xu-rong, et al. 2011. δD and δ18O variations of water in the Yellow River and its environmental significance[J]. Acta Geologica Sinica, 85(4): 596-602. (in Chinese) | |
[7] | 郭文斌, 嘉世旭, 段永红, 等. 2016. 青藏高原东北缘基底结构研究: 玛多-共和-雅布赖剖面上地壳地震折射探测[J]. 地球物理学报, 59(10): 3627-3636. |
GUO Wen-bin, JIA Shi-xu, DUAN Yong-hong, et al. 2016. A study on the basement tectonic units in the northeast margin of Tibetan plateau: The result of Maduo-Gonghe-Yabrai refraction profile[J]. Chinese Journal of Geophysics, 59(10): 3627-3636. (in Chinese) | |
[8] | 韩建恩, 罗鹏, 余佳, 等. 2020. 黄河源地区晚更新世湖泛事件及其意义[J]. 地质力学学报, 26(2): 232-243. |
HAN Jian-en, LUO Peng, YU Jia, et al. 2020. Pan-lake during the late Pleistocene in the source area of the Yellow River and its significance[J]. Journal of Geomechanics, 26(2): 232-243. (in Chinese) | |
[9] | 嘉世旭, 林吉焱, 郭文斌, 等. 2017. 巴颜喀拉块体地壳结构多样性探测[J]. 地球物理学报, 60(6): 2226-2238. |
JIA Shi-xu, LIN Ji-yan, GUO Wen-bin, et al. 2017. Investigation on diversity of crustal structures beneath the Bayan Har block[J]. Chinese Journal of Geophysics, 60(6): 2226-2238. (in Chinese) | |
[10] | 郎赟超, 刘丛强, 韩贵琳, 等. 2005. 贵阳市区地表/地下水化学与锶同位素研究[J]. 第四纪研究, 25(5): 655-662. |
LANG Yun-chao, LIU Cong-qiang, HAN Gui-lin, et al. 2005. Characterization of water-rock interaction and pollution of karstic hydrological system: A study on water chemistry and Sr isotope of surface/ground water of the Guiyang area[J]. Quaternary Sciences, 25(5): 655-662. (in Chinese) | |
[11] | 李林, 吴素霞, 朱西德, 等. 2008. 21世纪以来黄河源区高原湖泊群对气候变化的响应[J]. 自然资源学报, 23(2): 245-253. |
LI Lin, WU Su-xia, ZHU Xi-de, et al. 2008. Response of plateau lakes to changes of climate and frozen earth environment in the headwaters of the Yellow River since the 21st century[J]. Natural Resources, 23(2): 245-253. (in Chinese) | |
[12] | 李献智. 1998. 对地震前兆异常的一些再思考[J]. 地震, 18(2): 163-170. |
LI Xian-zhi. 1998. Re-thinking about the earthquake precursors[J]. Earthquake, 18(2): 163-170. (in Chinese) | |
[13] |
梁明剑, 杨耀, 杜方, 等. 2020. 青海达日断裂中段晚第四纪活动性与1947年M7¾地震地表破裂带再研究[J]. 地震地质, 42(3): 703-714. doi: 10.3969/j.issn.0253-4967.2020.03.011.
DOI |
LIANG Ming-jian, YANG Yao, DU Fang, et al. 2020. Late Quaternary activity of the central segment of the Dari Fault and restudy of the surface rupture zone of the 1947 M7¾ Dari earthquake, Qinghai Province[J]. Seismology and Geology, 42(3): 703-714. (in Chinese) | |
[14] |
梁明剑, 周荣军, 闫亮, 等. 2014. 青海达日断裂中段构造活动与地貌发育的响应关系探讨[J]. 地震地质, 36(1): 28-38. doi: 10.3969/j.issn.0253-4967.2014.01.003.
DOI |
LIANG Ming-jian, ZHOU Rong-jun, YAN Liang, et al. 2014. The relationships between neotectonicactivity of the middle segment of Dari Fault and its geomorphological response, Qinghai Province, China[J]. Seismology and Geology, 36(1): 28-38. (in Chinese) | |
[15] | 刘磊, 马茹莹, 张朋涛, 等. 2019. 青海省地震地球化学背景场特征研究[J]. 国际地震动态, (8): 50. |
LIU Lei, MA Ru-ying, ZHANG Peng-tao, et al. 2019. Characteristics of seismic geochemical background field in Qinghai Province[J]. Recent Developments in World Seismology, (8): 50. (in Chinese) | |
[16] | 刘庆云, 王永刚, 文雪峰. 2015. 青海都兰-玛多地区金多金属矿成矿特征及潜力分析[J]. 黄金科学技术, 23(3): 38-44. |
LIU Qing-yun, WANG Yong-gang, WEN Xue-feng. 2015. Analysis on the metallogenic characteristics and potential of gold polymetallic at Dulan-Maduoarea in Qinghai Province[J]. Gold Science and Technology, 23(3): 38-44. (in Chinese) | |
[17] | 路畅, 李营, 陈志, 等. 2018. 华北断陷盆地中北部地热水地球化学特征及成因初探[J]. 矿物岩石地球化学通报, 37(4): 663-673. |
LU Chang, LI Ying, CHEN Zhi, et al. 2018. A primary study on geochemical characteristics and genesis of geothermal water in thenorth-central part of the North China downfaulted basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 37(4): 663-673. (in Chinese) | |
[18] | 卢素锦, 周青平, 王永杰, 等. 2007. 三江源鄂陵湖区水环境现状评价[J]. 环境与健康杂志, 24(8): 598-599. |
LU Su-jin, ZHOU Qing-ping, WANG Yong-jie, et al. 2007. Comprehensive evaluation of water environment in the Eling Lake area[J]. Journal of Environment and Health, 24(8): 598-599. (in Chinese) | |
[19] | 罗栋梁, 金会军. 2014. 黄河源区玛多县1953-2012年气温和降水特征及突变分析[J]. 干旱区资源与环境, 28(11): 185-192. |
LUO Dong-liang, JIN Hui-jun. 2014. Variations of air temperature and precipitation from 1953 to 2012 in the Madoi station in the sources areas of the Yellow River[J]. Arid Land Resources and Environment, 28(11): 185-192. (in Chinese) | |
[20] | 吕金波, 车用太, 王继明, 等. 2006. 京北地区热水水文地球化学特征与地热系统的成因模式[J]. 地震地质, 28(3): 419-429. |
LÜ Jin-bo, CHE Yong-tai, WANG Ji-ming, et al. 2006. Hydrogeochemical characteristics of thermal water and genetic model of geothermal system in north Beijing[J]. Seismology and Geology, 28(3): 419-429. (in Chinese) | |
[21] | 吕苑苑, 郑绵平. 2014. 盐湖硼、 锂、 锶、 氯同位素地球化学研究进展[J]. 矿床地质, 33(5): 930-944. |
LÜ Yuan-yuan, ZHENG Mian-ping. 2014. Progress in study of isotopic geochemistry of boron, lithium, strontium and chlorine in salt lakes[J]. Mineral Deposits, 33(5): 930-944. (in Chinese) | |
[22] | 马玉虎, 姚家骏, 王培玲, 等. 2015. 2014年10月青海乌兰MS5.1地震发震构造及其预测意义[J]. 高原地震, 27(3): 1-6. |
MA Yu-hu, YAO Jia-jun, WANG Pei-ling, et al. 2015. The seismogenic structure and its prediction significance of Wulan MS5.1 earthquake in 2014 in Qinghai Province[J]. Plateau Earthquake Research, 27(3): 1-6. (in Chinese) | |
[23] | 钱会, 马致远, 李培月. 2005. 水文地球化学[M]. 北京: 地质出版社. |
QIAN Hui, MA Zhi-yuan, LI Pei-yue. 2005. Hydrogeochemistry[M]. Geological Publishing House, Beijing. (in Chinese) | |
[24] |
邵志刚, 冯蔚, 王芃, 等. 2020. 中国大陆活动地块边界带的地震活动特征研究综述[J]. 地震地质, 42(2): 271-282. doi: 10.3969/j.issn.0253-4967.2020.02.002.
DOI |
SHAO Zhi-gang, FENG Wei, WANG Peng, et al. 2020. A study review on characteristics of seismic activity of active-tectonic block boundaries in mainland China[J]. Seismology and Geology, 42(2): 271-282. (in Chinese) | |
[25] | 石宏宇. 2020. 岷江断裂带温泉流体地球化学特征[D]. 北京: 中国地震局地震预测研究所. |
SHI Hong-yu. 2020. Geochemical characteristics of hot spring fluids in the Minjiang fault zone[D]. Institute of Earthquake Forecasting, China Earthquake Administration, Beijing. (in Chinese) | |
[26] | 宋晚郊, 张绪教, 高万里, 等. 2013. 东昆仑造山带巴颜喀拉山群ASTER岩性信息提取[J]. 现代地质, 27(1): 116-123. |
SONG Wan-jiao, ZHANG Xu-jiao, GAO Wan-li, et al. 2013. Extraction of lithological information from Bayan Har Mountain Group of East Kunlun Orogenic Belt using ASTER image[J]. Geoscience, 27(1): 116-123. (in Chinese) | |
[27] | 孙玉军, 范桃园, 周春景, 等. 2015. 青藏高原巴颜喀拉地块构造形变特征的数值模拟[J]. 地质通报, 34(1): 71-82. |
SUN Yu-jun, FAN Tao-yuan, ZHOU Chun-jing, et al. 2015. Numerical modeling analysis of the tectonic deformation of Bayan Har block in the Tibetan plateau[J]. Geological Bulletin of China, 34(1): 71-82. (in Chinese) | |
[28] | 田军, 张克信, 龚一鸣. 2000. 东昆仑造山带东段下中三叠统研究进展[J]. 地球科学, 25(3): 290-294. |
TIAN Jun, ZHANG Ke-xin, GONG Yi-ming. 2000. Advances in lower and middle Triassic stratigraphicresearch in east of eastern Kunlun Orogenic Belt[J]. Earth Science, 25(3): 290-294. (in Chinese) | |
[29] | 闻学泽, 杜方, 张培震, 等. 2011. 巴颜喀拉块体北和东边界大地震序列的关联性与2008年汶川地震[J]. 地球物理学报, 54(3): 706-716. |
WEN Xue-ze, DU Fang, ZHANG Pei-zhen, et al. 2011. Correlation of major earthquake sequences on the northern and eastern boundaries of the Bayan Har block, and its relation to the 2008 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 54(3): 706-716. (in Chinese) | |
[30] | 肖琼, 沈立成, 袁道先, 等. 2009. 重庆北温泉水化学特征对汶川8.0级地震的响应[J]. 中国岩溶, 28(4): 385-390. |
XIAO Qiong, SHEN Li-cheng, YUAN Dao-xian, et al. 2009. Response of the Beiwenquan hot spring’s hydrochemical features in Chongqing to the Wenchuan earthquake of magnitude 8.0 in Sichuan[J]. Carsologica Sinica, 28(4): 385-390. (in Chinese) | |
[31] | 熊仁伟, 任金卫, 张军龙, 等. 2010. 玛多-甘德断裂甘德段晚第四纪活动特征[J]. 地震, 30(4): 65-73. |
XIONG Ren-wei, REN Jin-wei, ZHANG Jun-long, et al. 2010. Late Quaternary active characteristics of the Gande segment in the Maduo-Gande fault zone[J]. Earthquake, 30(4): 65-73. (in Chinese) | |
[32] | 晏锐, 黄辅琼, 顾瑾平. 2004. 中国大陆7级强震前地下流体前兆时空特征[J]. 地震, 24(1): 126-131. |
YAN Rui, HUANG Fu-qiong, GU Jin-ping. 2004. Spatial temporal characteristics of precursory anomalyof underground fluid before MS7.0 strong earthquakes in China’s continent[J]. Earthquake, 24(1): 126-131. (in Chinese) | |
[33] | 张春山, 张业成, 吴满路. 2003. 南北地震带南段水文地球化学特征及其与地震的关系[J]. 地质力学学报, 9(1): 21-30. |
ZHANG Chun-shan, ZHANG Ye-cheng, WU Man-lu. 2003. Study on relationship between earthquake and hydro-geochemistry of groundwater in southern part of north-south earthquake belt in China[J]. Journal of Geomechanics, 9(1): 21-30. (in Chinese) | |
[34] | 张军龙, 任金卫, 付俊东, 等. 2012. 东昆仑断裂带东部塔藏断裂地震地表破裂特征及其构造意义[J]. 地震, 32(1): 1-16. |
ZHANG Jun-long, REN Jin-wei, FU Jun-dong, et al. 2012. Earthquake rupture features and tectonic significance of the Tazang Fault in the eastern part of the East Kunlun fault zones[J]. Earthquake, 32(1): 1-16. (in Chinese) | |
[35] |
张磊, 刘耀炜, 任宏微, 等. 2016. 氢氧稳定同位素在地下水异常核实中的应用[J]. 地震地质, 38(3): 721-731. doi: 10.3969/j.issn.0253-4967.2016.03.017.
DOI |
ZHANG Lei, LIU Yao-wei, REN Hong-wei, et al. 2016. Application of stable oxygen and hydrogen isotopes to the verification of groundwater anomalies[J]. Seismology and Geology, 38(3): 721-731. (in Chinese) | |
[36] | 张少彤. 2020. 廊坊市地下水化学特征变化研究[J]. 地下水, 42(3): 39-42. |
ZHANG Shao-tong. 2020. Study on chemical characteristics of groundwater in Langfang City[J]. Ground Water, 42(3): 39-42. (in Chinese) | |
[37] | 张耀玲, 胡道功, 石玉若, 等. 2010. 东昆仑造山带牦牛山组火山岩SHRIMP锆石U-Pb年龄及其构造意义[J]. 地质通报, 29(11): 1614-1618. |
ZHANG Yao-ling, HU Dao-gong, SHI Yu-ruo, et al. 2010. SHRIMP zircon U-Pb ages and tectonic significance of Maoniushan Formation volcanic rocks in East Kunlun orogenic belt, China[J]. Geological Bulletin of China, 29(11): 1614-1618. (in Chinese) | |
[38] | 赵永红, 白竣天, 李小凡, 等. 2011, 活动断裂带附近地下水中的氢同位素变化与地震关系研究[J]. 岩石学报, 27(6): 1909-1915. |
ZHAO Yong-hong, BAI Jun-tian, LI Xiao-fan, et al. 2011. Correlation between hydrogen isotope in underground water near active fault and earthquakes[J]. Acta Petrologica Sinica, 27(6): 1909-1915. (in Chinese) | |
[39] | 赵永红, 谢雨晴, 王航, 等. 2017. 地震预测方法Ⅴ: 地下流体方法[J]. 地球物理学进展, 32(4): 1539-1547. |
ZHAO Yong-hong, XIE Yu-qing, WANG Hang, et al. 2017. Earthquake predictionⅤ: Subsurface fluid method[J]. Progress in Geophysics, 32(4): 1539-1547. (in Chinese) | |
[40] | 郑西来, 郭建青. 1996. 二氧化硅地热温标及其相关问题的处理方法[J]. 地下水, 18(2): 85-88. |
ZHENG Xi-lai, GUO Jian-qing. 1996. Silicon dioxide geothermal temperature standard and treatment method of related problems[J]. Ground Water, 18(2): 85-88. (in Chinese) | |
[41] | 周敖日格勒, 戴紧根, 李亚林, 等. 2017. 东昆仑山脉晚志留世-早侏罗世花岗类岩石中锆石微量元素地球化学特征及地质意义[J]. 岩石学报, 33(1): 173-190. |
ZHOU Aorigele, DAI Jin-gen, LI Ya-lin, et al. 2017. Zircon trace element geochemical characteristics of Late Silurian-Early Jurassic granitoids from eastern Kunlun Range and its geological significance[J]. Acta Petrologica Sinica, 33(1): 173-190. (in Chinese) | |
[42] | 周晓成, 王万丽, 李立武, 等. 2020. 金沙江-红河断裂带温泉气体地球化学特征[J]. 岩石学报, 36(7): 2197-2214. |
ZHOU Xiao-chen, WANG Wan-li, LI Li-wu, et al. 2020. Geochemical features of hot spring gases in the Jinshajiang-Red River fault zone, southeast Tibetan plateau[J]. Acta Petrologica Sinica, 36(7): 2197-2214. (in Chinese)
DOI URL |
|
[43] | 周训, 李晓露, 王蒙蒙, 等. 2017. 浅循环泉简析[J]. 水文地质工程地质, 44(5): 1-5. |
ZHOU Xun, LI Xiao-lu, WANG Meng-meng, et al. 2017. A preliminary analysis of the springs of shallow groundwater circulation[J]. Hydrogeology and Engineering Geology, 44(5): 1-5. (in Chinese) | |
[44] |
Armstrong S C, Sturchio N C, Hendry M J, et al. 1998. Strontium isotopic evidence on the chemical evolution of pore waters in the Milk River aquifer, Alberta, Canada[J]. Applied Geochemistry, 13(4): 463-475.
DOI URL |
[45] |
Arnórsson S. 1983. Chemical equilibria in Icelandic geothermal systems: Implications for chemical geothermometry investigations[J]. Geothermics, 12(2-3): 119-128.
DOI URL |
[46] |
Benavente O, Tassi F, Reich M, et al. 2016. Chemical and isotopic features of cold and thermal fluids discharged in the Southern Volcanic Zone between 32.5°S and 36°S: Insights into the physical and chemical processes controlling fluid geochemistry in geothermal systems of Central Chile[J]. Chemical Geology, 420(1): 97-113.
DOI URL |
[47] |
Chen Z, Zhou X, Du J, et al. 2015. Hydrochemical characteristics of hot spring waters in the Kangding district related to the Lushan MS7.0 earthquake in Sichuan, China[J]. Natural Hazards and Earth System Science, 15(6): 1149-1156.
DOI URL |
[48] |
Colman S M, Yu S, An Z, et al. 2007. Late Cenozoic climate changes in China’s western interior: A review of research on Lake Qinghai and comparison with other records[J]. Quaternary Science Reviews, 26(17-18): 2281-2300.
DOI URL |
[49] |
Craig H. 1961. Isotopic variations in meteoric waters[J]. Science, 133(3465): 1702-1703.
PMID |
[50] | Fournier R O. 1981. Application of water geochemistry to geothermal exploration and reservoir engineering[C]// Ryback L, Muffler L J(eds). Geothermal Systems: Principles and Case Histories. Wiley, New York. 109-143. |
[51] |
Fournier R O, Rowe J J. 1966. The deposition of silica in hot springs[J]. Bulletin Volcanologique, 29(1): 585-587.
DOI URL |
[52] |
Giggenbach W F. 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 52(12): 2749-2765.
DOI URL |
[53] |
Ingebritsen S E, Manga M. 2014. Earthquakes: Hydrogeochemical precursors[J]. Nature Geoscience, 7(10): 697-698.
DOI URL |
[54] |
Nezhad M T K, Tabatabaii S M, Gholami A. 2015. Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran[J]. Journal of Geochemical Exploration, 152:91-109.
DOI URL |
[55] | Li B, Shi Z M, Wang G C, et al. 2019. Earthquake-related hydrochemical changes in thermal springs in the Xianshuihe fault zone, western China[J]. Journal of Hydrology, 579:124-175. |
[56] | Oetting G C, Banner J L, Sharp J M. 1996. Regional controls on the geochemical evolution of saline groundwaters in the Edwards aquifer, central Texas[J]. Hydrology, 181(1-4): 251-283. |
[57] |
Podlesak D W, Torregrossa A M, Ehleringer J R, et al. 2008. Turnover of oxygen and hydrogen isotopes in the body water, CO2, hair, and enamel of a small mammal[J]. Geochimica et Cosmochimica Acta, 72(1): 19-35.
DOI URL |
[58] | Ren W, Yao T D, Yang X X, et al. 2013. Implications of variations in delta O18 and delta D in precipitation at Madoi in the eastern Tibetan plateau[J]. Quaternary International, 313:56-61. |
[59] |
Scanlon B R. 1989. Physical controls on hydrochemical variability in the inner bluegrass karst region of central Kentucky[J]. Ground Water, 27(5): 639-646.
DOI URL |
[60] | Shakeri A, Ghoreyshinia S, Mehrabi B, et al. 2015. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran[J]. Journal of Volcanology and Geothermal Research, 341:49-61. |
[61] |
Skelton A, Andrén M, Kristmannsdóttir H, et al. 2014. Changes in groundwater chemistry before two consecutive earthquakes in Iceland[J]. Nature Geoscience, 7(10): 752-756.
DOI URL |
[62] |
Song S R, Chen Y L, Liu C M, et al. 2005. Hydrochemical changes in spring waters in Taiwan: Implications for evaluating sites for earthquake precursory monitoring[J]. Terrestrial Atmospheric and Oceanic Sciences, 16(4): 745-762.
DOI URL |
[63] | Steinhorst K J, Hodge V F, Guo C, et al. 2001. Geochemical and statistical evidence of deep carbonate groundwater within overlying volcanic rock aquifers/aquitards of southern Neveda, USA[J]. Hydrology, 243(3-4): 254-271. |
[64] |
Tapponnier P, Xu Z, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 294(5547): 1671-1677.
PMID |
[65] | van der Woerd J, Tapponnier P, Ryerson F J, et al. 2002. Uniform postglacial slip-rate along the central 600km of the Kunlun Fault(Tibet), from26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology[J]. Geophysical Journal of the Royal Astronomical Society, 148(3): 356-388. |
[66] | Yu J S, Zhang H B, Yu F J, et al. 1984. Oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of Xizang[J]. Geochemistry, 3(2): 93-101. |
[67] |
Zhang J Y, Ma C Q, Xiong F H, et al. 2012. Petrogenesis and tectonic significance of the Late Permian-Middle Triassic calcalkaline granites in the Balong region, eastern Kunlun Orogen, China[J]. Geological Magazine, 149(5): 892-908.
DOI URL |
[68] |
Zhou X C, Liu L, Chen Z, et al. 2017. Gas geochemistry of the hot spring in the Litang fault zone, southeast Tibetan plateau[J]. Applied Geochemistry, 79:17-26.
DOI URL |
[69] |
Zhou X C, Yan Y C, Fang W Y, et al. 2021. Short-term seismic precursor anomalies of hydrogen concentration in Luojishan hot spring bubbling gas, eastern Tibetan plateau[J]. Frontiers in Earth Science, 8:586279.
DOI URL |
[70] |
Zhu L, Ji L, Liu C. 2021. Interseismic slip rate and locking along the Maqin-Maqu segment of the East Kunlun Fault, northern Tibetan plateau, based on Sentinel-1 images[J]. Journal of Asian Earth Sciences, 211:104703.
DOI URL |
[1] | 王博, 崔凤珍, 刘静, 周永胜, 徐胜, 邵延秀. 玛多 MS7.4地震断层土壤气特征与地表破裂的相关性[J]. 地震地质, 2023, 45(3): 772-794. |
[2] | 申华梁, 杨耀, 周志华, 芮雪莲, 廖晓峰, 赵德杨, 梁明剑, 陈梦蝶, 官致君, 任宏微. 川西理塘毛垭温泉群的成因及深部地热过程[J]. 地震地质, 2023, 45(3): 689-709. |
[3] | 苟家宁, 刘子维, 江颖, 张晓彤. 震前重力扰动与背景噪声时空变化特征以玛多MS7.4与漾濞MS6.4地震为例[J]. 地震地质, 2023, 45(1): 252-268. |
[4] | 李昭, 付碧宏. 东昆仑断裂带玛沁-玛曲段晚第四纪构造活动特征的地貌响应定量研究[J]. 地震地质, 2022, 44(6): 1421-1447. |
[5] | 李春果, 王宏伟, 温瑞智, 强生银, 任叶飞. 2021年青海玛多MS7.4地震随机有限断层三维地震动模拟[J]. 地震地质, 2021, 43(5): 1085-1100. |
[6] | 韦进, 郝洪涛, 韩宇飞, 胡敏章, 江颖, 刘子维. 基于连续重力台观测的玛多MS7.4地震的同震重力变化特征[J]. 地震地质, 2021, 43(4): 984-998. |
[7] | 宋向辉, 王帅军, 潘素珍, 宋佳佳. 2021年玛多MS7.4地震的深部构造背景[J]. 地震地质, 2021, 43(4): 757-770. |
[8] | 李陈侠, 袁道阳, 杨虎, 徐锡伟. 东昆仑断裂带东段分支断裂——阿万仓断裂晚第四纪构造活动特征[J]. 地震地质, 2016, 38(1): 44-64. |
[9] | 李陈侠, 徐锡伟, 闻学泽, 郑荣章, 陈桂华. 东昆仑断裂东段玛沁—玛曲段几何结构特征[J]. 地震地质, 2009, 31(3): 441-458. |
[10] | 程佳, 甘卫军, 王泽河, 陈为涛, 肖根如. 2001年昆仑山口西MS 8.1地震前背景形变场的模拟研究[J]. 地震地质, 2009, 31(1): 97-111. |
[11] | 徐锡伟, 于贵华, 陈桂华, 李陈侠, 张兰凤, Yann Klinger, Paul Tapponnier, 刘静. 青藏高原北部大型走滑断裂带近地表地质变形带特征分析[J]. 地震地质, 2007, 29(2): 201-217. |
[12] | 吕金波, 车用太, 王继明, 刘振锋, 刘成龙, 郑桂森. 京北地区热水水文地球化学特征与地热系统的成因模式[J]. 地震地质, 2006, 28(3): 419-429. |
[13] | 郭卫英, 单新建, 马瑾. 对2001年昆仑山口西8.1级地震前断层带红外增温异常的讨论[J]. 地震地质, 2004, 26(3): 548-556. |
[14] | 胡玉台, 张玉松, 李建华. 地下热水井中某些微量元素动态变化与地震活动的关系[J]. 地震地质, 1995, 17(1): 54-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||