[1] 邓起东, 程绍平, 马冀, 等. 2014. 青藏高原地震活动特征及当前地震活动形势[J]. 地球物理学报, 57(7): 2025—2042. DENG Qi-dong, CHENG Shao-ping, MA Ji, et al. 2014. Seismic activities and earthquake potential in the Tibetan plateau[J]. Chinese Journal of Geophysics, 57(7): 2025—2042(in Chinese). [2] 付真, 胡才博, 张海明, 等. 2014. 利用地表变形直接推算地震断层破裂深度[J]. 中国科学(D辑), 44(5): 919—927. FU Zhen, HU Cai-bo, ZHANG Hai-ming, et al. 2014. Direct estimation of rupture depths of earthquake faults from coseismic surface deformation[J]. Science in China(Ser D), 44(5): 919—927(in Chinese). [3] 季灵运, 刘传金, 徐晶, 等. 2017. 九寨沟MS7.0地震的InSAR观测及发震构造分析[J]. 地球物理学报, 60(10): 4069—4082. JI Ling-yun, LIU Chuan-jin, XU Jing, et al. 2017. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaogou MS7.0 earthquake in China[J]. Chinese Journal of Geophysics, 60(10): 4609—4082(in Chinese). [4] 刘斌. 2013. InSAR高精度观测地震形变场及其三维重建技术研究 [D]. 哈尔滨: 中国地震局工程力学研究所. LIU Bin. 2013. Methods for monitoring displacement field of earthquake with high-precision and constructing 3D coseismic maps using InSAR [D]. Institute of Engineering Mechanics, China Earthquake Administration, Harbin(in Chinese). [5] 刘琦. 2019. 汶川8.0级和芦山7.0级地震对区域地壳形变场及应力场的影响[J]. 国际地震动态, 484(4): 45—47. LIU Qi. 2019. Influence of Wenchuan MS8.0 and Lushan MS7.0 earthquakes on regional crustal deformation and stress field[J]. Recent Developments in World Seismology, 484(4): 45—47(in Chinese). [6] 刘云华, 单新建, 张迎峰, 等. 2018. 基于地震波及InSAR数据的2017年11月18日西藏米林MS6.9地震发震构造[J]. 地震地质, 40(6): 1254—1275. doi: 10.3969/j.issn.0253-4967.2018.06.005. LIU Yun-hua, SHAN Xin-jian, ZHANG Ying-feng, et al. 2018. Use of seismic waveforms and InSAR data for determination of the seismotectonics of the Mainling MS6.9 earthquake on Nov.18, 2017[J]. Seismology and Geology, 40(6): 1254—1275(in Chinese). [7] 屈春燕, 左荣虎, 单新建, 等. 2017. 尼泊尔MW7.8地震InSAR同震形变场及断层滑动分布[J]. 地球物理学报, 60(1): 151—162. QU Chun-yan, ZUO Rong-hu, SHAN Xin-jian, et al. 2017. Coseismic deformation field of the Nepal MS8.1 earthquake from Sentinel-1 A/ InSAR data and fault slip inversion[J]. Chinese Journal of Geophysics, 60(1): 151—162(in Chinese). [8] 沙海军, 吕悦军, 黄帅. 2018. 2017年九寨沟7.0级地震断层破裂尺度初步研究[J]. 震灾防御技术, 13(4): 921—930. SHA Hai-jun, LÜ Yue-jun, HUANG Shuai. 2018. Preliminary study of fault rupture scale of the 2017 Jiuzhaigou MS7.0 earthquake[J]. Technology for Earthquake Disaster Prevention, 13(4): 921—930(in Chinese). [9] 单新建, 屈春燕, 龚文瑜, 等. 2017. 2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演[J]. 地球物理学报, 60(12): 4527—4536. SHAN Xin-jian, QU Chun-yan, GONG Wen-yu, et al. 2017. Coseismic deformation field of the Jiuzhaigou MS7.0 earthquake from Sentinel-1 A InSAR data and fault slip inversion[J]. Chinese Journal of Geophysics, 60(12): 4527—4536(in Chinese). [10] 姚鑫, 周振凯, 李凌婧, 等. 2017. 2017年四川九寨沟MS7.0地震InSAR同震形变场及发震构造探讨[J]. 地质力学学报, 23(4): 507—514. YAO Xin, ZHOU Zhen-kai, LI Ling-jing, et al. 2017. InSAR co-seismic deformation of 2017 MS7.0 Jiuzhaigou earthquake and discussions on seismogenic tectonics[J]. Journal of Geomechanics, 23(4): 507—514(in Chinese). [11] 张国宏, 屈春燕, 宋小刚, 等. 2010. 基于InSAR同震形变场反演汶川MW7.9地震断层滑动分布[J]. 地球物理学报, 53(2): 269—279. ZHANG Guo-hong, QU Chun-yan, SONG Xiao-gang, et al. 2010. Slip distribution and source parameters inverted from co-seismic deformation derived by InSAR technology of Wenchuan MW7.9 earthquake[J]. Chinese Journal of Geophysics, 53(2): 269—279(in Chinese). [12] 张培震, 邓起东, 张国民, 等. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 33(S1): 12—20. ZHANG Pei-zhen, DENG Qi-dong, ZHANG Guo-min, et al. 2003. Strong earthquake activity and active blocks in Chinese mainland[J]. Science in China(Ser D), 33(S1): 12—20(in Chinese). [13] 赵雪. 2019. 2017年九寨沟地震同震滑动分布及其对邻近断层库仑应力的影响 [D]. 成都: 西南交通大学. ZHAO Xue. 2019. Coseismic slip distribution of the 2017 Jiuzhaigou earthquake and its influence on Coulomb stress of adjacent faults [D]. Southewest Jiaotong University, Chengdu(in Chinese). [14] Galland O, Bertelsen H S, Guldstrand F, et al. 2016. Application of open-source photogrammetric software MicMac for monitoring surface deformation in laboratory models[J]. Journal of Geophysical Research: Solid Earth, 121(4): 2852—2872. [15] Lin J, Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults[J]. Journal of Geophysical Research: Solid Earth, 109(B2): B02303. [16] Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75(4): 1135—1154. [17] Staniewicz S, Chen J. 2020. Accurate InSAR surface deformation mapping over the oil-producing Permian basin with automated tropospheric outlier removal[C]. IGARSS 2020. 2020 IEEE International Geoscience and Remote Sensing Symposium: IEEE: 2153—7003. [18] Toda S, Stein R S, Richards-Dinger K, et al. 2005. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer[J]. Journal of Geophysical Research: Solid Earth, 110(B5): B05S16. [19] Wang R, Motagh M, Walter T R. 2008. Inversion of slip distribution from co-seismic deformation data by a sensitivity-based iterative fitting method[C]. EGU General Assembly 2008, 10: EGU2008-A-07971. [20] Werner C, Wegmüller U, Strozzi T, et al. 2000. GAMMA SAR and interferometric processing software[C]. Proceedings of ERS-ENVISAT Symposium, Gothenburg, Sweden: 1620. |