[1] 崔笃信, 郝明, 秦姗兰, 等. 2019. 陕西中南部现今断层滑动速率和闭锁深度反演[J]. 地球物理学报, 62(12): 4648—4657. CUI Du-xin, HAO Ming, QIN Shan-lan, et al. 2019. Inversion of fault dip-slip rate and locking depth in central-southern Shannxi of China[J]. Chinese Journal of Geophysics, 62(12): 4648—4657(in Chinese). [2] 蔡妍, 吴建平, 房立华, 等. 2014. 鄂尔多斯东缘地震重定位及拉张盆地过渡区的地震分布特征[J]. 地球物理学报, 57(4): 1079—1090. CAI Yan, WU Jian-ping, FANG Li-hua, et al. 2014. Relocation of the earthquakes in the eastern margin of Ordos block and their tectonic implication in the transition zones of extensional basin[J]. Chinese Journal of Geophysics, 57(4): 1079—1090(in Chinese). [3] 程绍平, 杨桂枝. 2002. 山西中条山断裂带的晚第四纪分段模型[J]. 地震地质, 24(3): 289—302. CHENG Shao-ping, YANG Gui-zhi. 2002. Late Quaternary segmentation model of the Zhongtiaoshan Fault, Shanxi Province[J]. Seismology and Geology, 24(3): 289—302(in Chinese). [4] 陈国顺, 黄振昌. 1993. 山西侯马—河津一带西汉初期的强烈地震[J]. 中国地震, 3(9): 276—285. CHEN Guo-shun, HUANG Zhen-chang. 1993. Strong earthquakes occurred in the Houma-Hejin area in the early West Han dynasty[J]. Earthquake Research in China, 3(9): 276—285(in Chinese). [5] 邓起东, 于贵华, 叶文华. 1992. 地震地表破裂参数与震级关系的研究 [G]//国家地震局地质研究所编. 活动断裂研究. 北京: 地震出版社: 247—264. DENG Qi-dong, YU Gui-hua, YE Wen-hua. 1992. Study on the relations between parameters of surface rupture and magnitude [G]// Institute of Geology, State Seismological Bureau(ed). Research on Active Fault. Seismological Press, Beijing: 247—264(in Chinese). [6] 国家地震局 “鄂尔多斯周缘活动断裂系”课题组. 1988. 鄂尔多斯周缘活动断裂系 [M]. 北京: 地震出版社: 163—164. The Research Group on “Active Fault System around Ordos Massif”, State Seismological Bureau. 1988. Active Fault System around Ordos Massif [M]. Seismological Press, Beijing: 163—164(in Chinese). [7] 郭春彬. 2019. 运城盆地主要断裂活动性及其相关块体变形特征研究 [D]. 北京: 中国地震局地震预测研究所: 24. GUO Chun-bin. 2019. Study on main fault activity and deformation characteristic of related blocks in Yuncheng Basin [D]. Institution of Earthquake Forecasting, China Earthquake Administration, Beijing: 24(in Chinese). [8] 黄昕霞, 董少刚, 唐仲华, 等. 2007. 运城盆地地下水数值模拟与预测[J]. 资源环境与工程, 21(4): 402—406. HUANG Xin-xia, DONG Shao-gang, TANG Zhong-hua, et al. 2007. Groundwater numerical simulation and prediction of Yuncheng Basin[J]. Resources Environment & Engineering, 21(4): 402—406(in Chinese). [9] 季灵运, 刘立炜, 郝明. 2015. 利用InSAR技术研究滇西南镇康-永德地区现今地壳形变特征[J]. 地震研究, 38(1): 84—89. JI Ling-yun, LIU Li-wei, HAO Ming. 2015. Crustal deformation characteristic of Zhenkang-Yongde region in southwest Yunnan observed by InSAR technology[J]. Seismological Research, 38(1): 84—89(in Chinese). [10] 李振宏, 姜博宇, 董晓朋, 等. 2020. 运城盆地峨嵋台地前缘黄土塌陷现状及地质主控因素[J]. 煤田地质与勘探, 48(2): 171—178. LI Zhen-hong, JIANG Bo-yu, DONG Xiao-peng, et al. 2020. Collapses of loess at the front of the Emei major geological tableland in the Yuncheng Basin and their controlling factors[J]. Coal Geology and Exploration, 48(2): 171—178(in Chinese). [11] 李延兴, 杨国华, 李智, 等. 2003. 中国大陆活动地块的运动与应变状态[J]. 中国科学(D辑), 33(S1): 65—81. LI Yan-xing, YANG Guo-hua, LI Zhi, et al. 2003. Movement and strain state of active blocks in Chinese mainland[J]. Science in China(Ser D), 33(S1): 65—81(in Chinese). [12] 刘杰, 张永志, 张秀霞, 等. 2010. 基于GPS数据的粒子群算法反演断层三维滑动速率[J]. 大地测量与地球动力学, 30(2): 40—42. LIU Jie, ZHANG Yong-zhi, ZHANG Xiu-xia, et al. 2010. Fault slip velocity inversion by using particle swarm optimization algorithm from GPS data[J]. Journal of Geodesy and Geodynamics, 30(2): 40—42(in Chinese). [13] 陆一锋, 徐鸣洁, 王良书, 等. 2012. 鄂尔多斯东南缘地区的地壳结构[J]. 科学通报, 57(1): 59—64. LU Yi-feng, XU Ming-jie, WANG Liang-shu, et al. 2012. Crustal structure in the southeastern margin of Ordos[J]. Chinese Science Bulletin, 57(1): 59—64(in Chinese). [14] M7专项工作组. 2012. 中国大陆大地震中-长期危险性研究 [M]. 北京: 地震出版社: 317—321. M7 Special Working Group. 2012. Research on the Medium-Long Term Hazard of Large Earthquakes in Mainland China [M]. Seismological Press, Beijing: 317—321(in Chinese). [15] 苗德雨, 李有利, 吕胜华, 等. 2014. 山西中条山北麓断裂夏县段新构造运动[J]. 地理研究, 33(4): 665—673. MIAO De-yu, LI You-li, LÜ Sheng-hua, et al. 2014. Neotectonic activity in Xiaxian segment of the North Zhongtiao Mountains fault zone, Shanxi[J]. Geographical Research, 33(4): 665—673(in Chinese). [16] 乔鑫, 屈春燕, 单新建, 等. 2019. 基于时序InSAR的海原断裂带形变特征及运动学参数反演[J]. 地震地质, 41(6): 1481—1496. doi: 10.3969/j.issn.0253-4967.2019.06.011. QIAO Xin, QU Chun-yan, SHAN Xin-jian, et al. 2019. Deformation characteristics and kinematic parameters inversion of Haiyuan fault zone based on time series InSAR[J]. Seismology and Geology, 41(6): 1481—1496(in Chinese). [17] 屈春燕, 单新建, 宋小刚, 等. 2011. 基于PSInSAR技术的海原断裂带地壳形变初步研究[J]. 地球物理学报, 54(4): 984—993. QU Chun-yan, SHAN Xin-jian, SONG Xiao-gang, et al. 2011. The PSInSAR technique and its application to the study on crustal deformation of the Haiyuan fault zone[J]. Chinese Journal of Geophysics, 54(4): 984—993(in Chinese). [18] 任雪梅, 高孟潭, 冯静. 2010. 鄂尔多斯地块周缘历史强震的影响烈度研究[J]. 中国地震, 26(4): 450—456. REN Xue-mei, GAO Meng-tan, FENG Jing. 2010. Study on historical strong earthquakes affected intensity of counties and cities in the Erdos area[J]. Earthquake Research in China, 26(4): 450—456(in Chinese). [19] 单新建, 马瑾, 王长林, 等. 2002. 利用星载D-InSAR技术获取的地表形变场提取玛尼地震震源断层参数[J]. 中国科学(D辑), 32(10): 837—844. SHAN Xin-jian, MA Jin, WANG Chang-lin, et al. 2002. Using the surface deformation field obtained by space-borne D-InSAR technology to extract the focal fault parameters of the Mani earthquake[J]. Science in China(Ser D), 32(10): 837—844(in Chinese). [20] 司苏沛, 李有利, 吕胜华, 等. 2014. 山西中条山北麓断裂盐池段全新世古地震事件和滑动速率研究[J]. 中国科学(D辑), 44(9): 1958—1967. SI Su-pei, LI You-li, LÜ Sheng-hua, et al. 2014. Holocene paleoseismic events and slip rate in the Yanchi section of the fault at the northern foot of Zhongtiao Mountain, Shanxi[J]. Science in China(Ser D), 44(9): 1958—1967(in Chinese). [21] 宋小刚, 申星, 姜宇, 等. 2015. 通过InSAR与GPS数据融合获取汶川地震同震三维形变场[J]. 地震地质, 37(1): 222—231. doi: 10.3969/j.issn.0253-4967.2015.17. SONG Xiao-gang, SHEN Xing, JIANG Yu, et al. 2015. Coseismic 3D deformation field acquisition of the Wenchuan earthquake based on InSAR and GPS data[J]. Seismology and Geology, 37(1): 222—231(in Chinese). [22] 汤益先, 张红, 王超. 2006. 基于永久散射体雷达干涉测量的苏州地区沉降研究[J]. 自然科学进展, 16(8): 1015—1020. TANG Yi-xian, ZHANG Hong, WANG Chao. 2006. Research on subsidence in Suzhou area based on permanent scatter radar interferometry[J]. Progress in Natural Science, 16(8): 1015—1020(in Chinese). [23] 田勤俭, 丁国瑜. 1998. 青藏高原东北隅似三联点构造特征[J]. 中国地震, 14(4): 27—35. TIAN Qin-jian, DING Guo-yu. 1998. The tectonic feature of a Quasi-trijunction in the northeastern corner of Qinghai-Xizang plateau[J]. Earthquake Research in China, 14(4): 27—35(in Chinese). [24] 汪宝存, 远顺立, 王继华, 等. 2015. InSAR地面沉降监测精度分析与评价[J]. 遥感信息, 30(4): 9—14. WANG Bao-cun, YUAN Shun-li, WANG Ji-hua, et al. 2015. Accuracy analysis and evaluation of InSAR land subsidence monitoring[J]. Remote Sensing Information, 30(4): 9—14(in Chinese). [25] 王怡然, 李有利, 闫冬冬, 等. 2015. 中条山北麓断裂中南段全新世地震事件的初步研究[J]. 地震地质, 37(1): 1—12. doi: 10.3969/j.issn.0253-4967.2015.01. WANG Yi-ran, LI You-li, YAN Dong-dong, et al. 2015. Holocene paleoseismology of the middle and south segments of the north Zhongtiaoshan fault zone, Shanxi[J]. Seismology and Geology, 37(1): 1—12(in Chinese). [26] 闻学泽, 杜方, 张晶, 等. 2014.21世纪巴颜喀拉块体大震活动的动力学机制论文集[C]. 北京: 2014年中国地球科学联合学术年会. WEN Xue-ze, DU Fang, ZHANG Jing, et al. 2014. Collected papers on the dynamic mechanism of large earthquake activity in the Bayan Har block in the 21st century[C]. Annual Meeting of Chinese Geoscience Union(CGU), 2014, Beijing(in Chinese). [27] 徐伟, 高战武, 杨源源. 2016. 山西峨嵋台地北缘断裂全新世古地震研究[J]. 震灾防御技术, 11(3): 435—447. XU Wei, GAO Zhan-wu, YANG Yuan-yuan. 2016. Holocene and paleoearthquakes along the northern marginal fault of Emei platform, Shanxi Province[J]. Technology for Earthquake Disaster Prevention, 11(3): 435—447(in Chinese). [28] 徐伟, 高战武, 杨源源. 2014. 山西峨眉台地北缘断裂晚第四纪活动性[J]. 地震地质, 36(4): 1064—1076. doi: 10.3969/j.issn.0253-4967.2014.04.011. XU Wei, GAO Zhan-wu, YANG Yuan-yuan. 2014. Late Quaternary activity research of the northern marginal fault of Emei platform, Shanxi Province[J]. Seismology and Geology, 36(4): 1064—1076(in Chinese). [29] 姚亮. 2017. 运城市地下水漏斗区现状及治理措施探析[J]. 地下水, 39(3): 57—59. YAO Liang. 2017. Analysis of the status quo and treatment measures of the groundwater funnel area in Yuncheng City[J]. Groundwater, 39(3): 57—59(in Chinese). [30] 张培震, 王敏, 甘卫军, 等. 2003. GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J]. 地学前缘, 10(S1): 81—92. ZHANG Pei-zhen, WANG Min, GAN Wei-jun, et al. 2003. Slip rates along major active faults from GPS measurements and constraints on contemporary continental tectonics[J]. Earth Science Frontiers, 10(S1): 81—92(in Chinese). [31] 张培震, 闻学泽, 徐锡伟, 等. 2009. 2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J]. 科学通报, 54(7): 944—953. ZHANG Pei-zhen, WEN Xue-ze, XU Xi-wei, et al. 2009. The multi-unit combination model of the 2008 Wenchuan M8.0 earthquake[J]. Chinese Science Bulletin, 54(7): 944—953(in Chinese). [32] 张学民, 刁桂苓, 束沛镒. 2004. 鄂尔多斯块体及其东南缘剪切波速度结构与波速比研究[J]. 中国地震, 20(1): 53—63. ZHANG Xue-min, DIAO Gui-ling, SHU Pei-yi. 2004. Study on the shear wave velocity structure and velocity ratio under the Ordos plate and its southeastern marginal areas[J]. Earthquake Research in China, 20(1): 53—63(in Chinese). [33] 张岳桥, 施炜, 董树文. 2019. 华北新构造: 印欧碰撞远场效应与太平洋俯冲地幔上涌之间的相互作用[J]. 地质学报, 93(5): 3—33. ZHANG Yue-qiao, SHI Wei, DONG Shu-wen. 2019. Neotectonics of North China: Interplay between far-field effect of India-Eurasia collision and Pacific subduction related deep-seated mantle upwelling[J]. Acta Geologica Sinica, 93(5): 3—33(in Chinese). [34] 周志伟, 鄢子平, 刘苏, 等. 2011. 永久散射体与短基线雷达干涉测量在城市地表形变中的应用[J]. 武汉大学学报(信息科学版), 36(8): 928—931. ZHOU Zhi-wei, YAN Zi-ping, LIU Su, et al. 2011. Persistent scatterers and small baseline SAR interferometry for city subsidence mapping: A case study in Panjin, China[J]. Geomatics and Information Science of Wuhan University, 36(8): 928—931(in Chinese). [35] Berardino P, Fornaro G, Lanari R, et al. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375—2383. [36] Cavalié O, Lasserre C, Doin M P, et al. 2008. Measurement of interseismic strain across the Haiyuan Fault(Gansu, China)by InSAR[J]. Earth and Planetary Science Letters, 275(3): 246—257. [37] Fialko Y. 2006. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system[J]. Nature, 441(7096): 968—971. [38] Freund L B, Barnett D M. 1976. A two-dimensional analysis of surface deformation due to dip-slip faulting[J]. Bulletin of the Seismological Society of America, 66(3): 667—675. [39] Hanssen R F. 2001. Radar Interferometry: Data Interpretation and Error Analysis[M]. Kluwer Academic Publishers, Dordrecht: 215—226. [40] Hao M, Wang Q, Cui D, et al. 2016. Present-day crustal vertical motion around the Ordos block constrained by precise leveling and GPS data[J]. Surveys in Geophysics, 37(5): 923—936. [41] Hooper A, Zebker H, Segall P, et al. 2004. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 31(23): L23611. [42] Lu Z. 2007. InSAR imaging of volcanic deformation over cloud-prone areas-Aleutian islands[J]. Photogrammetric Engineering and Remote Sensing, 73(3): 245—257. [43] Mogi K. 1963. Some discussions on aftershocks, foreshocks and earthquake swarms: The fracture of a semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena(third paper)[J]. Bulletin of the Earthquake Research Institute, 41(1): 615—658. [44] Nof R N, Ziv A, Doin M P, et al. 2012. Rising of the lowest place on earth due to Dead Sea water-level drop: Evidence from SAR interferometry and GPS[J]. Journal of Geophysical Research: Solid Earth, 117(B5): B05412. [45] Savage J C, Simpson R W. 1997. Surface strain accumulation and the seismic moment tensor[J]. Bulletin Seismological Society of America, 87(5): 1345—1353. [46] Shi Y H, Eberhart R C. 1999. Empirical study of particle swarm optimization[C]. Congress on Evolutionary Computation, Washington DC: 1948—1950. [47] Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): B018774. [48] Ward S N. 1994. A multidisciplinary approach to seismic hazard in southern California[J]. Bulletin of the Seismological Society of America, 84(5): 1293—1309. [49] Yang C S, Zhang Q, Xu Q, et al. 2016. Complex deformation monitoring over the Linfen-Yuncheng Basin(China)with time series InSAR technology[J]. Remote Sensing, 8(4): 1—13. [50] Zebker H A, Rosen P A, Hensley S. 1997. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps[J]. Journal of Geophysical Research: Solid Earth, 102(B4): 7547—7563. [51] Zebker H A, Villasenor J. 1992. Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geoscienceand Remote Sensing, 30(5): 950—959. [52] Zhao C Y, Liu C J, Zhang Q, et al. 2018. Deformation of Linfen-Yuncheng Basin(China)and its mechanisms revealed by Π-RATE InSAR technique[J]. Remote Sensing of Environment, 218:221—230. |