[1] 杜方, 闻学泽, 张培震. 2010. 鲜水河断裂带炉霍段的震后滑动与形变[J]. 地球物理学报, 53(10): 2355—2366. DU Fang, WEN Xue-ze, ZHANG Pei-zhen. 2010. Post-seismic slip and deformation on the Luhuo segment of the Xianshuihe fault zone[J]. Chinses Journal of Geophysics, 53(10): 2355—2366(in Chinese). [2] 冯希杰, 王平. 2001. 立交构造与渭河盆地地震活动[J]. 西北地震学报, 23(2): 160—163. FENG Xi-jie, WANG Ping. 2001. Three-dimensional cross structure and seismicity of Weihe Basin[J]. Northwestern Seismological Journal, 23(2): 160—163. [3] 国家地震局“鄂尔多斯周缘活动断层系”课题组. 1988. 鄂尔多斯周缘活动断层系 [M]. 北京: 地震出版社: 136—139. The Research Group on “Active Fault System around Ordos Massif”, State Seismological Bureau. 1998. Active Fault System around Ordos Massif [M]. Seismological Press, Beijing: 136—139(in Chinese). [4] 何红前. 2011. 渭河盆地地裂缝成因机理研究 [D]. 西安: 长安大学: 142—155. HE Hong-qian. 2011. Study on formation mechanism of ground fissures in Weihe Basin [D]. Chang'an University, Xi'an: 142—155(in Chinese). [5] 胡亚轩, 王庆良, 崔笃信, 等. 2008. 根据断层形变剖面资料分析泾阳口镇-关山断层活动状况[J]. 灾害学, 23(S1): 62—65. HU Ya-xuan, WANG Qing-liang, CUI Du-xin, et al. 2008. Analysis on activity of Kouzhen-Guanshan Fault in Jingyang based on deformation profile data[J]. Journal of Catastrophology, 23(S1): 62—65(in Chinese). [6] 李永善. 1992. 西安地裂缝及渭河盆地活动断层研究 [M]. 北京: 地震出版社: 114—121. LI Yong-shan. 1992. Research on Ground Fissures in Xi'an Region and Active Faults in Weihe Basin [M]. Seismological Press, Beijing: 114—121(in Chinese). [7] 李煜航, 王庆良, 崔笃信, 等. 2016. 渭河盆地口镇-关山断裂活动性成因[J]. 大地测量与地球动力学, 36(8): 669—673. LI Yu-hang, WANG Qing-liang, CUI Du-xin, et al. 2016. Analysis on the faulting origin of Kouzhen-Guanshan Fault in Weihe Basin[J]. Journal of Geodesy and Geodynamics, 36(8): 669—674(in Chinese). [8] 刘东生. 1997. 第四纪环境 [M]. 北京: 科学出版社: 198—221. LIU Dong-sheng. 1997. Quaternary Environment [M]. Science Press, Beijing: 198—221(in Chinese). [9] 米丰收, 韩恒悦, 靳金泉, 等. 1993. 口镇-关山断裂的现今活动特征[J]. 西安地质学院学报, 15(2): 40—47. MI Feng-shou, HAN Heng-yue, JIN Jin-quan, et al. 1993. Nowadays active features of the Kouzhen-Guanshan Fault[J]. Journal of Xi'an College of Geology, 15(2): 40—47(in Chinese). [10] 彭建兵, 卢全中, 黄强兵, 等. 2017. 汾渭盆地地裂缝灾害 [M]. 北京: 科学出版社: 198—209. PENG Jian-bing, LU Quan-zhong, HUANG Qiang-bing, et al. 2017. The Hazard of Ground Fissure in Fenwei Graben [M]. Science Press, Beijing: 198—209(in Chinese). [11] 乔建伟. 2018. 基于地球关键带理论的渭北台塬地裂缝成因机理研究 [D]. 西安: 长安大学: 97—99. QIAO Jian-wei. 2018. Study on the formation mechanism of ground fissures in Weihe terrace based on Earth's critical zone theory [D]. Chang'an University, Xi'an: 97—99(in Chinese). [12] 瞿伟, 王运生, 张勤, 等. 2016. 空间大地测量GPS揭示的汾渭盆地及其邻域现今地壳应变场变化特征[J]. 地球物理学报, 59(3): 828—839. QU Wei, WANG Yun-sheng, ZHANG Qin, et al. 2016. Current crustal deformation variation characteristics of the Fenwei Basin and its surrounding areas revealed by GPS data[J]. Chinese Journal of Geophysics, 59(3): 828—839(in Chinese). [13] 徐煜坚, 申屠炳明, 汪一鹏. 1988. 渭河盆地北缘断裂带活动特征的初步研究[J]. 地震地质, 10(4): 79—90. XU Yu-jian, SHENTU Bing-ming, WANG Yi-peng. 1988. A preliminary study of the characteristics of the activity of the northern boundary fault belt of Weihe Basin[J]. Seismology and Geology, 10(4): 79—90(in Chinese). [14] 张培震, 郑德文, 尹功明, 等. 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究, 26(1): 5—13. ZHANG Pei-zhen, ZHENG De-wen, YIN Gong-ming, et al. 2006. Discussion on late Cenozoic growth and rise of northeastern margin of the Tibetan plateau[J]. Quaternary Sciences, 26(1): 5—13(in Chinese). [15] Bevis M, Isacks B L. 1981. Leveling arrays as multicomponent tiltmeters: Slow deformation in the New Hebrides Island Arc[J]. Journal of Geophysical Research: Solid Earth, 86(B9): 7808—7824. [16] Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703—706. [17] England P C, Houseman G A. 1989. Extension during continental convergence with special reference to the Tibetan plateau[J]. Journal of Geophysical Research: Solid Earth, 94(17): 561—597. [18] Heller F, Liu T S. 1982. Magnetostratigraphical dating of loess deposits in China[J]. Nature, 300(5891): 431—433. [19] Khoshmanesh M, Shirzaei M. 2018. Episodic creep events on the San Andreas Fault caused by pore pressure variations[J]. Nature Geoscience, 11(8): 610—614. [20] Kukla G. 1987. Loess stratigraphy in central China[J]. Quaternary Science Reviews, 6(3-4): 191—207, 209—219. [21] Kukla G, An Z S. 1989. Loess stratigraphy in central China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 72(8): 203—225. [22] Lee J C, Angelier J, Chu H T, et al. 2001. Continuous monitoring of an active fault in a plate suture zone: A creepmeter study of the Chihshang Fault, eastern Taiwan[J]. Tectonophysics, 333(1): 219—240. [23] Lienkaemper J J, Barry G R, Smith F E, et al. 2013. The Greenville Fault: Preliminary estimates of its long-term creep rate and seismic potential[J]. Bulletin of the Seismological Society of America, 103(5): 2729—2738. [24] Lienkaemper J J, Galehouse J S, Simpson R W. 2001. Long-term monitoring of creep rate along the Hayward Fault and evidence for a lasting creep response to 1989 Loma Prieta earthquake[J]. Geophysical Research Letters, 28(11): 2265—2268. [25] Lienkaemper J J, Mcfarland F S, Simpson R W, et al. 2014. Using surface creep rate to infer fraction locked for sections of the San Andreas fault system in northern California from alignment array and GPS data[J]. Bulletin of the Seismological Society of America, 104(6): 3094—3114. [26] Lin A M, Rao G, Yan B. 2015. Flexural fold structures and active faults in the northern-western Weihe Graben, central China[J]. Journal of Asian Earth Sciences, 114(1): 226—241. [27] Lisowski M, Prescott W H. 1981. Short-range distance measurements along the San Andrews fault system in central California, 1975 to 1979[J]. Bulletin of the Seismological Society of America, 71(5): 1607—1624. [28] Liu J H, Zhang P Z, Lease R O, et al. 2013. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology[J]. Tectonophysics, 584(22): 281—296. [29] Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 189(4201): 419—426. [30] Murase M, Matta N, Lin C H, et al. 2013. An episodic creep-slip event detected by precise levelling surveys in the central part of the Longitudinal Valley Fault, eastern Taiwan, in 2011—2012[J]. Tectonophysics, 68:904—913. [31] Roeloffs E A, Burford S S, Riley F S, et al. 1989. Hydrologic effects on water level changes associated with episodic fault creep near Parkfield, California[J]. Journal of Geophysical Research: Solid Earth, 94(B9): 12387—12402. [32] Savage J C, Prescott W H, Lisowski M, et al. 1979. Geodolite measurements of deformation near Hollister, California, 1971—1978[J]. Journal of Geophysical Research: Solid Earth, 84(B13): 7599—7615. [33] Schulz S S, Mavko G M, Burford R O, et al. 1982. Long-term fault creep observations in central California[J]. Journal of Geophysical Research: Solid Earth, 87(B8): 6977—6982. [34] Sun J M. 2005. Long-term fluvial archives in the Fen Wei Graben, central China, and their bearing on the tectonic history of the India-Asia collision system during the Quaternary[J]. Quaternary Science Reviews, 24(10-11): 1279—1286. [35] Wei M, Kaneko Y, Liu Y J, et al. 2013. Episodic fault creep events in California controlled by shallow frictional heterogeneity[J]. Nature Geoscience, 6(7): 566—570. [36] Zhang J, Wen X Z, Cao J L, et al. 2018. Surface creep and slip-behavior segmentation along the northwestern Xianshuihe fault zone of southwestern China determined from decades of fault-crossing short-baseline and short-level surveys[J]. Tectonophysics, 722(2): 356—372. [37] Zhang Y Q, Mercier J L, Vergely P. 1998. Extension in the graben systems around the Ordos(China), and its contribution to the extrusion tectonics of South China with respect to Gobi-Mongolia[J]. Tectonophysics, 285(1): 41—75. |