[1] 陈九辉, 刘启元, 李顺成, 等. 2009. 汶川MS8.0地震余震序列重新定位及其地震构造研究[J]. 地球物理学报, 52(1): 390—397. CHEN Jiu-hui, LIU Qi-yuan, LI Shun-cheng, et al. 2009. Seismotectonic study by relocation of the Wenchuan MS8.0 earthquake sequence[J]. Chinese Journal of Geophysics, 52(1): 390—397(in Chinese). [2] 高平, 刘若新, 马宝林, 等. 1994. 绿泥石片岩和斜长角闪岩在高温高压下的物理力学性质及其应用[J]. 地震地质, 16(1): 83—88. GAO Ping, LIU Ruo-xin, MA Bao-lin, et al. 1994. The physical and mechanical properties of chlorite-schist and plagiochase amphibolite at high P T conditions and its application[J]. Seismology and Geology, 16(1): 83—88(in Chinese). [3] 韩亮, 周永胜, 党嘉祥, 等. 2009. 3GPa熔融盐固体介质高温高压三轴压力容器的温度标定[J]. 高压物理学报, 23(6): 407—414. HAN Liang, ZHOU Yong-sheng, DANG Jia-xiang, et al. 2009. Temperature calibration for 3GPa molten salt medium triaxial pressure vessel[J]. Chinese Journal of High Pressure Physics, 23(6): 407—414(in Chinese). [4] 韩亮, 周永胜, 姚文明. 2013. 中地壳断层带内微裂隙愈合与高压流体形成条件的模拟实验研究[J]. 地球物理学报, 56(1): 91—105. HAN Liang, ZHOU Yong-sheng, YAO Wen-ming.2013. A simulating experimental study on crack healing and the formation of high pore fluid pressure in faults of middle crust[J]. Chinese Journal of Geophysics, 56(1): 91—105(in Chinese). [5] 刘贵, 周永胜, 姚文明, 等. 2013. 组构对花岗片麻岩高温流变影响的实验研究[J].地球物理学报, 56(7): 2332—2347. LIU Gui, ZHOU Yong-sheng, YAO Wen-ming, et al. 2013. Experimental study on the effect of pre-existing fabric to deformation of granitic gneiss under high temperature and pressure[J]. Chinese Journal of Geophysics, 56(7): 2332—2347(in Chinese). [6] 刘照星, 周永胜, 刘贵, 等. 2013. 3GPa熔融盐固体介质三轴高温压力容器的轴压摩擦力标定[J].高压物理学报, 27(1): 19—28. LIU Zhao-xing, ZHOU Yong-sheng, LIU Gui, et al. 2013. Axial friction calibration for 3GPa molten salt medium triaxial pressure vessel under high pressure and high temperature[J]. Chinese Journal of High Pressure Physics, 27(1): 19—28(in Chinese). [7] 牛露, 周永胜, 姚文明, 等. 2018. 高温高压条件下彭灌杂岩的强度对汶川地震发震机制的启示[J]. 地球物理学报, 61(5): 1728—1740. NIU Lu, ZHOU Yong-sheng, YAO Wen-ming, et al. 2018. Experiments on the strength of Pengguan Complex under high temperature and high pressure and its implication to seismogenic mechanism of the Wenchuan earthquake[J]. Chinese Journal of Geophysics, 61(5): 1728—1740(in Chinese). [8] 宋娟, 周永胜, 何昌荣. 2008. 石英岩脆塑性转化的实验研究[J]. 高压物理学报, 22(2): 167—174. SONG Juan, ZHOU Yong-sheng, HE Chang-rong.2008. The brittle-plastic transition in experimentally deformated quartzite[J]. Chinese Journal of High Pressure Physics, 22(2): 167—174(in Chinese). [9] 周永胜, 韩亮, 靖晨, 等. 2014. 龙门山断层脆塑性转化带流变结构与汶川地震孕震机制[J].地震地质, 36(3): 882—893. doi: 10.3969/j.issn.0253-4967.2014.03.025. ZHOU Yong-sheng, HAN Liang, JING Chen, et al. 2014. The rheological structures of brittle-plastic transition in Longmenshan fault zone and seismogenic mechanism of Wenchuan earthquake[J]. Seismology and Geology, 36(3): 882—893(in Chinese). [10] 周永胜, 何昌荣. 2009. 汶川地震区的流变结构与发震高角度逆断层滑动的力学条件[J]. 地球物理学报, 52(2): 474—484. ZHOU Yong-sheng, HE Chang-rong.2009. The rheological structures and mechanics of high-angle reverse fault slip for Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics, 52(2): 474—484(in Chinese). [11] 周永胜, 何昌荣. 2003. 地壳主要岩石流变参数及华北地壳流变性质研究[J].地震地质, 25(1): 109—122. ZHOU Yong-sheng, HE Chang-rong.2003. Rheological parameter of crustal rocks and crustal rheology of North China[J]. Seismology and Geology, 25(1): 109—122(in Chinese). [12] 周永胜, 蒋海昆, 何昌荣. 2002. 不同温压条件下居庸关花岗岩脆塑性转化与失稳型式的实验研究[J].中国地震, 18(4): 389—400. ZHOU Yong-sheng, JIANG Hai-kun, HE Chang-rong.2002. Experiments of brittle-plastic transition, modes of instability of Juyongguan granite at different T-P condition[J]. Seismology and Geology, 18(4): 389—400(in Chinese). [13] Bürgmann R, Dresen G.2008. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy and field observations[J]. Annual Review of Earth and Planetary Sciences, 36(1): 531—567. [14] Cao S Y, Neubauer F, Liu J, et al. 2016. Rheological weakening of high-grade mylonites during low-temperature retrogression: The exhumed continental Ailao Shan-Red River fault zone, SE Asia[J]. Journal of Asian Earth Sciences, 139:40—60. [15] Dang J X, Zhou Y S, Rybacki E, et al. 2016. An experimental study on brittle-plastic transition during deformation of granite[J]. Journal of Asian Earth Sciences, 139:30—39. [16] Dell'Angelo L N, Tullis J.1996. Textural and mechanical evolution with progressive strain in experimentally deformed aplite[J]. Tectonophysics, 256(1-4): 57—82. [17] Druiventak A, Matysiak A, Renner J, et al. 2012. Kick-and-cook experiments on peridotite: Simulating coseismic deformation and post-seismic creep[J]. Terra Nova, 24(1): 62—69. [18] Duan Q B, Yang X S, Ma S L, et al. 2016. Fluid-rock interactions in seismic faults: Implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake, China[J]. Tectonophysics, 666:260—280. [19] Dunlap W J, Hirth G, Teyssier C.1997. Thermomechanical evolution of a ductile duplex[J]. Tectonics, 16(6): 983—1000. [20] Gerald J D F, Stünitz H.1993. Deformation of granitoids at low metamorphic grade I: Reactions and grain size reduction[J]. Tectonophysics, 221(3-4): 269—297. [21] Han L, Zhou Y S, He C R, et al. 2016. Sublithostatic pore fluid pressure in the brittle-ductile transition zone of Mesozoic Yingxiu-Beichuan Fault and its implication for the 2008 MW7.9 Wenchuan earthquake[J]. Journal of Asian Earth Sciences, 117:107—118. [22] Hirth G, Teyssier C, Dunlap W J.2001. An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks[J]. International Journal of Earth Sciences, 90(1): 77—87. [23] Hirth G, Tullis J.1994. The brittle-plastic transition in experimentally deformed quartz aggregates[J]. Journal of Geophysical Research: Solid Earth, 99(B6): 11731—11748. [24] Koch N, Masch L.1992. Formation of alpine mylonites and pseudotachylytes at the base of the Silvretta nappe, eastern Alps[J]. Tectonophysics, 204(3-4): 289—306. [25] Küster M, Stöckhert B.1999. High differential stress and sublithostatic pore fluid pressure in the ductile regime-microstructural evidence for short-term post-seismic creep in the Sesia Zone, Western Alps[J]. Tectonophysics, 303(1-4): 263—277. [26] Liu G, Zhou Y S, He C R, et al. 2016. An experimental study on effect of pre-existing fabric to deformation of foliated mylonite under high temperature and pressure[J]. Geological Journal, 51(1): 92—112. [27] Liu G, Zhou Y S, Shi Y L, et al. 2017. Strength variation and deformational behavior in anisotropic mylonites under high-temperature and -pressure conditions: An experimental study[J]. Journal of Structural Geology, 96:21—34. [28] Schaff D P, Bokelmann G H R, Beroza G C, et al. 2002. High-resolution image of Calaveras Fault seismicity[J]. Journal of Geophysical Research: Solid Earth, 107(B9): ESE 5-1—ESE 5-16. [29] Scholz C H. 2007. The Mechanics of Earthquakes and Faulting[M]. Cambridge University Press, Cambridge. [30] Stipp M, Stünitz H, Heilbronner R, et al. 2002. The eastern Tonale fault zone: A “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700℃[J]. Journal of Structural Geology, 24(12): 1861—1884. [31] Stöckhert B, Brix M R, Kleinschrodt R, et al. 1999. Thermochronometry and microstructures of quartz: A comparison with experimental flow laws and predictions on the temperature of the brittle-plastic transition[J]. Journal of Structural Geology, 21(3): 351—369. [32] Trepmann C A, Hsu C, Hentschel F, et al. 2017. Recrystallization of quartz after low-temperature plasticity: The record of stress relaxation below the seismogenic zone[J]. Journal of Structural Geology, 95(FEB): 77—92. [33] Trepmann C A, Stöckhert B.2001. Mechanical twinning of jadeite: An indication of synseismic loading beneath the brittle-ductile transition[J]. International Journal of Earth Sciences, 90(1): 4—13. [34] Trepmann C A, Stöckhert B.2002. Cataclastic deformation of garnet: A record of synseismic loading and postseismic creep[J]. Journal of Structural Geology, 24(11): 1845—1856. [35] Trepmann C A, Stöckhert B.2003. Quartz microstructures developed during non-steady state plastic flow at rapidly decaying stress and strain rate[J]. Journal of Structural Geology, 25(12): 2035—2051. [36] Trepmann C A, Stöckhert B.2013. Short-wavelength undulatory extinction in quartz recording coseismic deformation in the middle crust: An experimental study[J]. Solid Earth, 4:263—276. [37] Trepmann C A, Stöckhert B, Dorner D, et al. 2007. Simulating coseismic deformation of quartz in the middle crust and fabric evolution during postseismic stress relaxation: An experimental study[J]. Tectonophysics, 442(1-4): 83—104. [38] van Daalen M, Heilbronner R, Kunze K.1999. Orientation analysis of localized shear deformation in quartz fibres at the brittle ductile transformation[J]. Tectonophysics, 303(1-4): 83—107. [39] Wintsch R P, Yeh M W.2013. Oscillating brittle and viscous behavior through the earthquake cycle in the Red River Shear Zone: Monitoring flips between reaction and textural softening and hardening[J]. Tectonophysics, 587:46—62. [40] Zhang L, He C R.2016. Frictional properties of phyllosilicate-rich mylonite and conditions for the brittle-ductile transition[J]. Journal of Geophysical Research: Solid Earth, 121(4): 3017—3047. [41] Zhou Y S, He C R, Huang X G, et al. 2009. Rheological complexity of mafic rocks and effect of mineral component to creep of rocks[J]. Earth Science Frontiers, 16(1): 76—87. |