[1] 毕丽思, 陈小芳, 马浩明, 等. 2018. 基于高密度钻孔分析广州城区的软土空间分布特征及其震陷情况[J]. 地震研究, 41(4): 637-645, 658. BI Li-si, CHEN Xiao-fang, MA Hao-ming, et al.2018. Analysis on spatial distribution feature of soft soil in Guangzhou urban region and its seismic subsidence based on dense drilling holes[J]. Journal of Seismological Research, 41(4): 637-645, 658(in Chinese). [2] 陈伟光, 赵红梅, 常郁. 2000. 广州地区活动断裂的特征及其与工程抗震的关系[J]. 华南地震, 20(2): 47-56. CHEN Wei-guang, ZHAO Hong-mei, CHANG Yu.2000. Features of active faults in Guangzhou region and relation to earthquake resistant engineering[J]. South China Journal of Seismology, 20(2): 47-56(in Chinese). [3] 邓钟尉. 2016. 广州市主要断裂特征及其对城市建设的影响[J]. 城市勘测, (6): 161-166. DENG Zhong-wei.2016. Main fracture characteristics of Guangzhou City and impact on urban construction[J]. Urban Geotechnical Investigation & Surveying, (6): 161-166(in Chinese). [4] 杜成亮, 赵伟, 梁东辉, 等. 2018. 广州从化岭南村岩溶塌陷成因机制分析[J]. 防灾科技学院学报, 20(2): 33-38. DU Cheng-liang, ZHAO Wei, LIANG Dong-hui, et al.2018. Analysis of formation mechanism of karst collapse in Lingnan village of Conghua, Guangzhou City[J]. Journal of Institute of Disaster Prevention, 20(2): 33-38(in Chinese). [5] 方燎原. 2005. 广州城市环境地质问题[J]. 地球与环境, 33(S1): 614-616. FANG Liao-yuan.2005. City environment geology problem of Guangzhou[J]. Earth and Environment, 33(S1): 614-616(in Chinese). [6] 雷金山, 阳军生, 肖武权, 等. 2009. 广州岩溶塌陷形成条件及主要影响因素[J]. 地质与勘探, 45(4): 488-492. LEI Jin-shan, YANG Jun-sheng, XIAO Wu-quan, et al.2009. Analysis of forming conditions and main influential factors of karst collapse in Guangzhou[J]. Geology and Exploration, 45(4): 488-492(in Chinese). [7] 林思蔚. 1994. 广州构造地质研究与建筑[J]. 广州建筑,22(4): 31-37.LIN Si-wei. 1994. Guangzhou structural geology research and architecture [J]. Guangzhou Architecture, 22(4): 31-37(in Chinese). [8] 刘会平, 王艳丽, 刘江龙, 等. 2005. 广州市主要地质灾害成灾机制与时空分布[J]. 自然灾害学报, 14(5): 149-153. LIU Hui-ping, WANG Yan-li, LIU Jiang-long, et al.2005. Cause mechanism and spatiotemporal distribution of major geological disasters in Guangzhou[J]. Journal of Natural Disasters, 14(5): 149-153(in Chinese). [9] 刘江龙, 刘会平, 刘文剑. 2007. 广州市主城区地面塌陷灾害危险性评价研究[J]. 防灾减灾工程学报, 27(4): 488-492. LIU Jiang-long, LIU Hui-ping, LIU Wen-jian.2007. Study on ground collapse risk evaluation in main urban area of Guangzhou City[J]. Journal of Disaster Prevention and Mitigation Engineering, 27(4): 488-492(in Chinese). [10] 马淑芹, 栗连弟, 卞真付, 等. 2007. 用Nakamura技术评估天津地区场地效应[J]. 中国地震, 23(1): 25-34. MA Shu-qin, LI Lian-di, BIAN Zhen-fu, et al.2007. Study on site response in Tianjin by Nakamura technique[J]. Earthquake Research in China, 23(1): 25-34(in Chinese). [11] 王伟君, 陈棋福, 齐诚, 等. 2011. 利用噪声HVSR方法探测近地表结构的可能性和局限性: 以保定地区为例[J]. 地球物理学报, 54(7): 1783-1797. WANG Wei-jun, CHEN Qi-fu, QI Cheng, et al.2011. The feasibilities and limitations to explore the near-surface structure with microtremor HVSR method: A case in Baoding area of Hebei Province, China[J]. Chinese Journal of Geophysics, 54(7): 1783-1797(in Chinese). [12] Bard P Y, SESAME Participants.2004. The SESAME project: An overview and main results[C]. Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver. [13] Boatwright J, Fletcher J B, Fumal T E.1991. A general inversion scheme for source, site, and propagation characteristics using multiply recorded sets of moderate-sized earthquakes[J]. Bulletin of the Seismological Society of America, 81(5): 1754-1782. [14] Bonnefoy-Claudet S, Cornou C, Bard P Y, et al.2006. H/V ratio: A tool for site effects evaluation. Results from 1-D noise simulations[J]. Geophysical Journal International, 167(2): 827-837. [15] Borcherdt R D.1970. Effects of local geology on ground motion near San Francisco Bay[J]. Bulletin of the Seismological Society of America, 60(1): 29-61. [16] Chen Q F, Liu L B, Wang W J, et al.2009. Site effects on earthquake ground motion based on microtremor measurements for metropolitan Beijing[J]. Chinese Science Bulletin, 54(2): 280-287. [17] Field E, Jacob K.1993. The theoretical response of sedimentary layers to ambient seismic noise[J]. Geophysical Research Letters, 20(24): 2925-2928. [18] Lachet C, Bard P Y.1994. Numerical and theoretical investigations on the possibilities and limitations of Nakamuras technique[J]. Journal of Physics of the Earth, 42(4): 377-397. [19] Liu L B, Chen Q F, Wang W J, et al.2014. Ambient noise as the new source for urban engineering seismology and earthquake engineering: A case study from Beijing metropolitan area[J]. Earthquake Science, 27(1): 89-100. [20] Nakamura Y.1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Quarterly Report of RTRI, 30(1): 25-33. [21] Nakamura Y.1997. Seismic vulnerability indices for ground and structures using microtremor[C]. World Congress on Railway Research, Florence, Italy. [22] Nogoshi M, Igarashi T.1971. On the amplitude characteristics of microtremor(part 2)[J]. Journal of the Seismological Society of Japan, 24:26-40. [23] Parolai S, Bormann P, Milkereit C.2002. New relationships between VS, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area(Germany)[J]. Bulletin of the Seismological Society of America, 92(6): 2521-2527. [24] Richter C F.1958. Elementary Seismology[M]. San Francisco: Freeman and Company. [25] Stevenson P R.1976. Microearthquakes at Flathead Lake, Montana: A study using automatic earthquake processing[J]. Bulletin of the Seismological Society of America, 66(1): 61-80. |