[1] 陈杰, 陈宇坤, 丁国瑜, 等. 2003. 2001年昆仑山口西8.1级地震地表破裂带[J]. 第四纪研究, 23(6): 629—639. CHEN Jie, CHEN Yu-kun, DING Guo-yu, et al.2003. Surface rupture zones of the 2001 earthquake MS8.1 west of Kunlun Pass, northern Qinghai-Xizang Plateau[J]. Quaternary Sciences, 23(6): 629—639(in Chinese). [2] 邓起东, 朱艾斓, 高翔. 2014. 再议走滑断裂与地震孕育和发生条件[J]. 地震地质, 36(3): 562—573. doi: 10.3969/j.issn.0253-4967.2014.03.002. DENG Qi-dong, ZHU Ai-lan, GAO Xiang.2014. Re-evaluation of seismogenic and occurrence conditions of large earthquakes on strike-slip faults[J]. Seismology and Geology, 36(3): 562—573(in Chinese). [3] 丁国瑜. 1989. 第四纪断层上断裂活动的群集及迁移现象[J]. 第四纪研究, 1:36—47. DING Guo-yu.1989. Grouping and migration of faulting on Quaternary faults[J]. Quaternary Sciences, 1:36—47(in Chinese). [4] 丁国瑜. 1995. 阿尔金活断层的古地震与分段[J]. 第四纪研究, 15(2): 97—106. DING Guo-yu.1995. Paleoearthquakes along the Altun active fault and its segmentation[J]. Quaternary Sciences, 15(2): 97—106(in Chinese). [5] 国家地震局“阿尔金活动断裂带”课题组. 1992. 阿尔金活动断裂带 [M]. 北京: 地震出版社. Research Group of the Altyn Tagh Active Fault Zone, State Seismological Bureau. 1992. The Altyn Tagh Active Fault Zone [M]. Seismological Press, Beijing(in Chinese). [6] 侯献华, 郑绵平, 张成君, 等. 2010. 柴达木盆地西部大浪滩140ka以来沉积特征与古环境[J]. 地质学报, 84(11): 1623—1630. HOU Xian-hua, ZHENG Mian-ping, ZHANG Cheng-jun, et al.2010. Sedimentary characteristics and paleoenvironment of Dalangtan Salt Lake in western Qaidam Basin, since 140k BP[J]. Acta Geologica Sinica, 84(11): 1623—1630(in Chinese). [7] 贾承造. 2005. 中国中西部前陆冲断带构造特征与天然气富集规律[J]. 石油勘探与开发, 32(4): 9—15. JIA Cheng-zao.2005. Foreland thrust-fold belt features and gas accumulation in midwest China[J]. Petroleum Exploration and Development, 32(4): 9—15(in Chinese). [8] 刘志宏, 王芃, 沙茜, 等. 2010. 柴达木盆地阿尔金斜坡带构造特征与阿尔金断裂形成时间讨论: 以月牙山地区为例[J]. 地质学报, 84(9): 1275—1282. LIU Zhi-hong, WANG Peng, SHA Qian, et al.2010. Structural features of Altyn slope zone and formation timing of Altyn Fault in Qaidam Basin, taking the Yueyashan area for example[J]. Acta Geologica Sinica, 84(9): 1275—1282(in Chinese). [9] 毛黎光, 肖安成, 王亮, 等. 2013. 柴达木盆地西北缘始新世晚期古隆起与阿尔金断裂的形成[J]. 岩石学报, 29(8): 2876—2882. MAO Li-guang, XIAO An-cheng, WANG Liang, et al.2013. Uplift of NW margin of Qaidam Basin in the Late Eocene: Implications for the initiation of Altyn Fault[J]. Acta Petrologica Sinica, 29(8): 2876—2882(in Chinese). [10] 潘家伟, 李海兵, 孙知明, 等. 2015. 阿尔金断裂带新生代活动在柴达木盆地中的响应[J]. 岩石学报, 31(12): 3701—3712. PAN Jia-wei, LI Hai-bing, SUN Zhi-ming, et al.2015. Tectonic responses in the Qaidam Basin induced by Cenozoic activities of the Altyn Tagh Fault[J]. Acta Petrologica Sinica, 31(12): 3701—3712(in Chinese). [11] 王峰, 徐锡伟, 郑荣章, 等. 2002. 阿尔金断裂带东段地表破裂分段研究[J].地震地质, 24(2): 145—158. WANG Feng, XU Xi-wei, ZHENG Rong-zhang, et al.2002. Segmentation of surface ruptures on the eastern segment of the Altyn Tagh fault zone[J]. Seismology and Geology, 24(2): 145—158(in Chinese). [12] 王虎, 冉勇康, 李彦宝. 2011. 小型拉分盆地的生长与走滑断层的位移速率: 以青藏高原东南缘则木河断裂带为例[J]. 地震地质, 33(4): 818—827. doi: 10.3969/j.issn.0253-4967.2011.04.007. WANG Hu, RAN Yong-kang, LI Yan-bao.2011. Growth of a small pull-apart basin and slip rate of strike-slip fault: With the example of Zemuhe Fault on the southeastern margin of the Tibetan plateau[J]. Seismology and Geology, 33(4): 818—827(in Chinese). [13] 王亚东, 张涛, 迟云平, 等. 2011. 柴达木盆地西部地区新生代演化特征与青藏高原隆升[J]. 地学前缘, 18(3): 141—150. WANG Ya-dong, ZHANG Tao, CHI Yun-ping, et al.2011. Cenozoic uplift of the Tibetan plateau: Evidence from the tectonic-sedimentary evolution of the western Qaidam Basin[J]. Geoscience Frontiers, 18(3): 141—150(in Chinese). [14] 闻学泽. 2001. 活动断裂的可变破裂尺度地震行为与级联破裂模式的应用[J]. 地震学报, 23(4): 380—390. WEN Xue-ze.2001. Earthquake behavior of variable rupture-scale on active faults and application of the cascade-rupturing model[J]. Acta Seismologica Sinica, 23(4): 380—390(in Chinese). [15] 吴婵, 阎存凤, 李海兵, 等. 2013. 柴达木盆地西部新生代构造演化及其对青藏高原北部生长过程的制约[J]. 岩石学报, 29(6): 2211—2222. WU Chan, YAN Cun-feng, LI Hai-bing, et al.2013. Cenozoic tectonic evolution of the western Qaidam Basin and its constrain on the growth of the northern Tibetan plateau[J]. Acta Petrologica Sinica, 29(6): 2211—2222(in Chinese). [16] 吴传勇, 张竹琪, 赵翠萍, 等. 2014. 2014年新疆于田MS7.3地震: 巴颜喀喇地块侧向挤出的构造响应[J]. 地球物理学报, 57(10): 3226—3237. WU Chuan-yong, ZHANG Zhu-qi, ZHAO Cui-ping, et al.2014. 2014 Yutian MS7.3 earthquake: Structural response of the Bayankala tectonic-block to eastward extrusion[J]. Chinese Journal of Geophysics, 57(10): 3226—3237(in Chinese). [17] 吴磊. 2011. 阿尔金断裂中段新生代活动过程及盆地响应 [D]. 杭州: 浙江大学. WU Lei.2011. The Cenozoic tectonic process of central segment of the Altyn Tagh Fault and its basin response [D]. Zhejiang University, Hangzhou(in Chinese). [18] 吴磊, 巩庆霖, 覃素华. 2013. 阿尔金断裂新生代大规模走滑起始时间的厘定[J]. 岩石学报, 29(8): 2837—2850. WU Lei, GONG Qing-lin, QIN Su-hua.2013. When did Cenozoic left-slip along the Altyn Tagh Fault initiate?A comprehensive approach[J]. Acta Petrologica Sinica, 29(8): 2837—2850(in Chinese). [19] 吴磊, 肖安成, 汪立群, 等. 2012. 阿尔金断裂中段南侧EW向隆起的形成及对阿尔金山新生代隆升机制的启示[J]. 中国科学(D辑), 42(12): 1863—1876. WU Lei, XIAO An-cheng, WANG Li-qun, et al.2012. EW-trending uplifts along the southern side of the central segment of the Altyn Tagh Fault, NW China: Insight into the rising mechanism of the Altyn Mountain during the Cenozoic[J]. Science in China(Ser D), 42(12): 1863—1876(in Chinese). [20] 肖安成, 吴磊, 李洪革, 等. 2013. 阿尔金断裂新生代活动方式及其与柴达木盆地的耦合分析[J]. 岩石学报, 29(8): 2826—2836. XIAO An-cheng, WU Lei, LI Hong-ge, et al.2013. Tectonic processes of the Cenozoic Altyn Tagh Fault and its coupling with the Qaidam Basin, NW China[J]. Acta Petrologica Sinica, 29(8): 2826—2836(in Chinese). [21] 谢富仁, 刘光勋. 1989. 阿尔金断裂带中段区域新构造应力场分析[J]. 中国地震, 5(3): 26—36. XIE Fu-ren, LIU Guang-xun.1989. New tectonic stress field in the central segment of the Altun fault zone, China[J]. Earthquake Research in China, 5(3): 26—36(in Chinese). [22] 徐波, 肖安成, 吴磊, 等. 2013. 阿尔金断裂新生代构造活动的两阶段性: 来自地震属性分析的证据[J]. 岩石学报, 29(8): 2859—2866. XU Bo, XIAO An-cheng, WU Lei, et al.2013. Two-stage activity of the Altyn Tagh Fault during the Cenozoic: Evidence from seismic attributes analysis[J]. Acta Petrologica Sinica, 29(8): 2859—2866(in Chinese). [23] 徐锡伟, 陈文彬, 于贵华, 等. 2002. 2001年11月14日昆仑山库赛湖地震(MS8.1)地表破裂带的基本特征[J]. 地震地质, 24(1): 1—13. XU Xi-wei, CHEN Wen-bin, YU Gui-hua, et al.2002. Characteristic features of the surface ruptures of the Hoh Sai Hu(Kunlunshan)earthquake(MS8.1)northern Tibetan plateau, China[J]. Seismology and Geology, 24(1): 1—13(in Chinese). [24] 徐锡伟, 谭锡斌, 吴国栋, 等. 2011. 2008年于田MS7.3地震地表破裂带特征及其构造属性讨论[J]. 地震地质, 33(2): 462—471. doi: 10.3969/j.issn.0253-4967.2011.02.019. XU Xi-wei, TAN Xi-bin, WU Guo-dong, et al.2011. Surface rupture features of the 2008 Yutian MS7.3 earthquake and its tectonic nature[J]. Seismology and Geology, 33(2): 462—471(in Chinese). [25] 徐锡伟, 于贵华, 陈桂华, 等. 2007. 青藏高原北部大型走滑断裂带近地表地质变形带特征分析[J].地震地质, 29(2): 201—217. XU Xi-wei, YU Gui-hua, CHEN Gui-hua, et al.2007. Near-surface character of permanent geologic deformation across the mega-strike-slip faults in the northern Tibetan plateau[J]. Seismology and Geology, 29(2): 201—217(in Chinese). [26] Avouac J P, Tapponnier P.1993. Kinematic model of active deformation in central Asia[J]. Geophysical Research Letters, 20(10): 895—898. [27] Bendick R, Bilham R, Freymueller J T, et al.2000. Geodetic evidence for a low slip rate in the Altyn Tagh Fault[J]. Nature, 404(6773): 69—72. [28] Burchfiel B C, Deng Q D, Molnar P, et al.1989. Intracrustal detachment within zones of continental deformation[J]. Geology, 17(8): 748—752. [29] Duan B, Liu Z, Elliott A J.2019. Multicycle dynamics of the Aksay Bend along the Altyn Tagh Fault in Northwest China: 2. The realistically complex fault geometry[J]. Tectonics, 38(3): 1120—1137. [30] Duan B, Oglesby D D.2005. Multicycle dynamics of nonplanar strike-slip faults[J]. Journal of Geophysical Research: Solid Earth, 110(B3): B03304. doi: 10.1029/2004JB003298. [31] Duan B, Oglesby D D.2006. Heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike-slip faults[J]. Journal of Geophysical Research: Solid Earth, 111(B5): B05309. doi: 10.1029/2005JB004138. [32] Elliott A J, Oskin M E, Liu-Zeng J, et al.2015. Rupture termination at restraining bends: The last great earthquake on the Altyn Tagh Fault[J]. Geophysical Research Letters, 42(7): 2164—2170. [33] England P, Molnar P.1997. Active deformation of Asia: From kinematics to dynamics[J]. Science, 278(5338): 647—650. [34] Fang X, Zhang W, Meng Q, et al.2007. High-resolution magneto stratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan plateau[J]. Earth and Planetary Science Letters, 258(1-2): 293—306. [35] Harris R A, Day S M.1993. Dynamics of fault interaction: Parallel strike-slip faults[J]. Journal of Geophysical Research: Solid Earth, 98(B3): 4461—4472. [36] Li H, Pan J, Lin A, et al.2016. Coseismic surface ruptures associated with the 2014 MW6.9 Yutian earthquake on the Altyn Tagh Fault, Tibetan plateau[J]. Bulletin of the Seismological Society of America, 106(2): 595—608. [37] Mériaux A S, Ryerson F J, Tapponnier P, et al.2004. Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh[J]. Journal of Geophysical Research: Solid Earth, 109(B6): B06401. doi: 10.1029/2003JB002558. [38] Mériaux A S, Tapponnier P, Ryerson F J, et al.2005. The Aksay segment of the northern Altyn Tagh Fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate[J]. Journal of Geophysical Research: Solid Earth, 110(B4): B04404. doi: 10.1029/2004JB003210. [39] Mériaux A S, Van der Woerd J, Tapponnier P, et al.2012. The Pingding segment of the Altyn Tagh Fault(91°E): Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces[J]. Journal of Geophysical Research: Solid Earth, 117(B9): B09406. doi: 10.1029/2012JB009289. [40] Meyer B, Tapponnier P, Gaudemer Y, et al.1996. Rate of left-lateral movement along the easternmost segment of the Altyn Tagh Fault, east of 96°E(China)[J]. Geophysical Journal International, 124(1): 29—44. [41] Peltzer G, Tapponnier P.1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach[J]. Journal of Geophysical Research: Solid Earth, 93(B12): 15085—15117. [42] Scholz C.2002. The Mechanics of Earthquakes and Faulting: Second Edition [M]. Cambridge University Press, Cambridge: 1—439. [43] Shen Z K, Wang M, Li Y X, et al.2001. Crustal deformation along the Altyn Tagh fault system, western China, from GPS[J]. Journal of Geophysical Research: Solid Earth, 106(B12): 30607—30621. [44] Sun Z M, Yang Z Y, Pei J L, et al.2005. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: Implications for tectonic uplift and block rotation in northern Tibetan plateau[J]. Earth and Planetary Science Letters, 237(3-4): 635—646. [45] Tapponnier P, Molnar P.1977. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 82(20): 2905—2930. [46] Tapponnier P, Xu Z Q, Roger F, et al.2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671—1677. [47] Van der Woerd J, Xu X, Li H, et al.2001. Rapid active thrusting along the northwestern range front of the Tanghe Nan Shan(western Gansu, China)[J]. Journal of Geophysical Research: Solid Earth, 106(B12): 30475—30504. [48] Wang Y, Zhen J, Zhang W, et al.2012. Cenozoic uplift of the Tibetan plateau: Evidence from the tectonic-sedimentary evolution of the western Qaidam Basin[J]. Geoscience Frontiers, 3(2): 175—187. [49] Washburn Z, Arrowsmith J R, Dupont-Nivet G, et al.2003. Paleoseismology of the Xorxol segment of the central Altyn Tagh Fault, Xinjiang, China[J]. Annals of Geophysics, 46(5): 1015—1034. [50] Washburn Z, Arrowsmith J R, Forman S L, et al.2001. Late Holocene earthquake history of the central Altyn Tagh Fault, China[J]. Geology, 29(11): 1051—1054. [51] Wu L, Lin X, Cowgill E, et al.2019. Middle Miocene reorganization of the Altyn Tagh fault system, northern Tibetan plateau[J]. GSA Bulletin, 131(7-8): 1157—1178. [52] Wu L, Xiao A, Yang S, et al.2012. Two-stage evolution of the Altyn Tagh Fault during the Cenozoic: New insight from provenance analysis of a geological section in NW Qaidam Basin, NW China[J]. Terra Nova, 24(5): 387—395. [53] Xu X, Tapponnier P, Van der Woerd J, et al.2005. Late Quaternary sinistral slip rate along the Altyn Tagh Fault and its structural transformation model[J]. Science in China(Ser D), 48(3): 384—397. [54] Yin A, Dang Y, Zhang M, et al.2007. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions(part 2): Wedge tectonics in southern Qaidam Basin and the Eastern Kunlun Range[J]. Geological Society of America Special Papers, 433:369—390. [55] Yin A, Dang Y, Zhang M, et al.2008. Cenozoic tectonic evolution of the Qaidam Basin and its surrounding regions(Part 3): Structural geology, sedimentation, and regional tectonic reconstruction[J]. Geological Society of America Bulletin, 120(7-8): 847—876. [56] Yin A, Rumelhart P E, Butler R, et al.2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 114(10): 1257—1295. [57] Yuan Z, Liu-Zeng J, Wang W, et al.2018. A 6000-year-long paleoseismologic record of earthquakes along the Xorkoli section of the Altyn Tagh Fault, China[J]. Earth and Planetary Science Letters, 497:193—203. [58] Zhang P Z, Molnar P, Xu X.2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan plateau[J]. Tectonics, 26(5): TC5010. doi: 10.1029/2006TC002014. [59] Zhang P Z, Molnar P, Zhang W G, et al.1988. Bounds on the average recurrence interval of major earthquakes along the Haiyuan Fault in north-central China[J]. Seismological Research Letters, 59(3): 81—89. [60] Zhang P Z, Shen Z, Wang M, et al.2004. Continuous deformation of the Tibetan plateau from global positioning system data[J]. Geology, 32(9): 809—812. |