[1] 韩恒悦, 米丰收, 刘海云. 2001. 渭河盆地带地貌结构与新构造运动[J]. 地震研究, 24(3): 251—257. doi: 10.3969/j.issn.1000-0666.2001.03.011. HAN Heng-yue, MI Feng-shou, LIU Hai-yun.2001. Geomorphic structure in the Weihe Basin and neotectonic movement[J]. Journal of Seismological Research, 24(3): 251—257(in Chinese). [2] 刘护军, 薛祥煦. 2004. 对渭河盆地新生界及其年代的讨论[J]. 地球科学与环境学报, 26(4): 1—5. doi: 10.3969/j.issn.1672-6561.2004.04.001. LIU Hu-jun, XUE Xiang-xu.2004. Discussion on the Cenozoic and its chronology in the Weihe river basin[J]. Journal of Earth and Environment, 26(4): 1—5(in Chinese). [3] 刘建辉, 张培震, 郑德文, 等. 2010. 秦岭太白山新生代隆升冷却历史的磷灰石裂变径迹分析[J]. 地球物理学报, 53(10): 2405—2414. doi: 10.3969/j.issn.0001-5733.2010.10.014. LIU Jian-hui, ZHANG Pei-zhen, ZHENG De-wen, et al.2010. The cooling history of Cenozoic exhumation and uplift of the Taibai Mountain, Qinling, China: Evidence from the apatite fission track(AFT)analysis[J]. Chinese Journal of Geophysics, 53(10): 2405—2414(in Chinese). [4] 陕西省地震局. 1996. 秦岭北缘活动断裂带 [M]. 北京: 地震出版社: 1—20. Seismological Bureau of Shaanxi Province. 1996. The Northern Qinling Active Fault System [M]. Seismological Press, Beijing: 1—20(in Chinese). [5] 万景林, 李齐, 王瑜. 2000. 华山岩体中、 新生代抬升的裂变径迹证据[J]. 地震地质, 22(1): 53—58. WAN Jing-lin, LI Qi, WANG Yu.2000. The fission track evidence of Huashan batholith uplifting in Mesozoic ̄Cenozoic[J]. Seismology and Geology, 22(1): 53—58(in Chinese). [6] 万景林, 王瑜, 李齐, 等. 2005. 太白山中新生代抬升的裂变径迹年代学研究[J]. 核技术, 28(9): 712—716. doi: 10.3321/j.issn: 0253-3219.2005.09.017. WAN Jing-lin, WANG Yu, LI Qi, et al.2005. Apatite fission track study of Taibai Mountain uplift in the Mesozoic-Cenozoic[J]. Nuclear Techniques, 28(9): 712—716(in Chinese). [7] 王斌, 郑洪波, 王平, 等. 2013. 渭河盆地新生代地层与沉积演化研究: 现状和问题[J]. 地球科学进展, 28(10): 1126—1135. doi: 10.11867/j.issn.1001-8166.2013.10.1126. WANG Bin, ZHENG Hong-bo, WANG Ping, et al.2013. The Cenozoic strata and depositional evolution of Weihe Basin: Progresses and problems[J]. Advances in Earth Science, 28(10): 1126—1135(in Chinese). [8] 吴中海, 吴珍汉, 万景林, 等. 2003. 华山新生代隆升-剥蚀历史的裂变径迹热年代学分析[J]. 地质科技情报, 22(3): 27—32. doi: 10.3969/j.issn.1000-7849.2003.03.005. WU Zhong-hai, WU Zhen-han, WAN Jing-lin, et al.2003. Cenezoic uplift and denudation history of Huashan Mountains: Evidence from fission track thermochronology of Huashan granite[J]. Geological Science and Technology Information, 22(3): 27—32(in Chinese). [9] 邢作云, 赵斌, 涂美义, 等. 2005. 汾渭裂谷系与造山带耦合关系及其形成机制研究[J]. 地学前缘, 12(2): 247—262. doi: 10.3321/j.issn.1005-2321.2005.02.027. XING Zuo-yun, ZHAO Bin, TU Mei-yi, et al.2005. The formation of the Fenwei rift valley[J]. Earth Science Frontiers, 12(2): 247—262(in Chinese). [10] 徐伟, 刘志成, 袁兆德, 等. 2017a. 华山山前河流地貌参数及其构造意义[J]. 地震地质, 39(6): 1316—1335. doi: 10.3969/j.issn.0253-4967.2017.06.015. XU Wei, LIU Zhi-cheng, YUAN Zhao-de, et al.2017a. River geomorphic parameters of the Huashan piedmont and their tectonic implications[J]. Seismology and Geology, 39(6): 1316—1335(in Chinese). [11] 徐伟, 杨源源, 袁兆德, 等. 2017b. 华山山前断裂断错地貌及晚第四纪活动性[J]. 地震地质, 39(3): 587—604. doi: 10.3969/j.issn.0253-4967.2017.03.011. XU Wei, YANG Yuan-yuan, YUAN Zhao-de, et al.2017b. Late Quaternary faulted landforms and fault activity of the Huashan piedmont fault[J]. Seismology and Geology, 39(3): 587—604(in Chinese). [12] 杨源源, 高战武, 徐伟. 2012. 华山山前断裂中段晚第四纪活动的地貌表现及响应[J]. 震灾防御技术, 7(4): 335—347. doi: 10.3969/j.issn.1673-5722.2012.04.001. YANG Yuan-yuan, GAO Zhan-wu, XU Wei.2012. Geomorphic expression and response of the activity along the middle section of Huashan front fault in the late Quaternary period[J]. Technology for Earthquake Disaster Prevention, 7(4): 335—347(in Chinese). [13] 尹功明, 卢演俦, 赵华, 等. 2001. 华山新生代构造抬升[J]. 科学通报, 46(13): 1121—1123. doi: 10.3321/j.issn: 0023-074X.2001.13.016. YIN Gong-ming, LU Yan-chou, ZHAO Hua, et al.2001. The tectonic uplift of the Huashan in the Cenozoic[J]. Chinese Science Bulletin, 46(13): 1121—1123(in Chinese). [14] 张安良, 米丰收, 种瑾. 1989. 1556 年陕西华县大地震形变遗迹及华山山前断裂古地震研究[J]. 地震地质, 11(3): 73—81. ZHANG An-liang, MI Feng-shou, CHONG Jin. 1989. Deformation relics of the 1556 Huaxian(Shaanxi, China)great earthquake and the study of palaeoseismicity on the frontal fault zone of the Huashan Mts [J]. Seismology and Geology, 11(3): 73—81(in Chinese). [15] Binnie S A, Phillips W M, Summerfield M A, et al.2007. Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range[J]. Geology, 35(8): 743—746. doi: 10.1130/G23641A. [16] Dibiase R A, Whipple K X, Heimsath A M, et al.2010. Landscape form and millennial erosion rates in the San Gabriel Mountains, CA[J]. Earth and Planetary Science Letters, 289(1-2): 134—144. doi: 10.1016/j.epsl.2009.10.036. [17] Dong Y, Safonova I, Wang T.2016. Tectonic evolution of the Qinling orogen and adjacent orogenic belts[J]. Gondwana Research, 30:1—5. doi: 10.1016/j.gr.2015.12.001. [18] Flint J J.1974. Stream gradient as a function of order, magnitude, and discharge[J]. Water Resources Research, 10(5): 969—973. doi: 10.1029/wr010i005p00969. [19] Fox M, Bodin T, Shuster D L.2015. Abrupt changes in the rate of Andean Plateau uplift from reversible jump Markov Chain Monte Carlo inversion of river profiles[J]. Geomorphology, 238:1—14. doi: 10.1016/j.geomorph.2015.02.022. [20] Gallen S F, Wegmann K W.2017. River profile response to normal fault growth and linkage: An example from the Hellenic forearc of south-central Crete, Greece[J]. Earth Surface Dynamics, 5:161—186. doi: 10.5194/esurf-5-161—2017. [21] Goren L, Fox M, Willett S D.2014. Tectonics from fluvial topography using formal linear inversion: Theory and applications to the Inyo Mountains, California[J]. Journal of Geophysical Research: Earth Surface, 119(8): 1651—1681. doi: 10.1002/2014jf003079. [22] Heberer B, Anzenbacher T, Neubauer F, et al.2014. Polyphase exhumation in the western Qinling Mountains, China: Rapid early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift[J]. Tectonophysics, 617(4): 31—43. doi: 10.1016/j.tecto.2014.01.011. [23] Howard A D, Kerby G.1983. Channel changes in badlands[J]. GSA Bulletin, 94(6): 739—752. doi: 10.1130/0016-7606(1983)94<739: CCIB>2.0.CO; 2. [24] Kent E, Boulton S J, Whittaker A, et al.2017. Normal fault growth and linkage in the Gediz(Alaşehir)Graben, western Turkey, revealed by transient river long-profiles and slope-break knickpoints[J]. Earth Surface Processes and Landforms, 42(5): 836—852. doi: 10.1002/esp. 4049. [25] Kirby E, Whipple K X.2001. Quantifying differential rockuplift rates via stream profile analysis[J]. Geology, 29(5): 415—418. doi: 10.1130/0091-7613(2001)029<0415: qdrurv>2.0.co; 2. [26] Kirby E, Whipple K X.2012. Expression of active tectonics in erosional landscapes[J]. Journal of Structure Geology, 44:54—75. doi: 10.1016/j.jsg.2012.07.009. [27] Kirby E, Whipple K X, Tang W, et al.2003. Distribution of active rock uplift along the eastern margin of the Tibetan plateau: Inferences from bedrock channel longitudinal profiles[J]. Journal of Geophysical Research: Solid Earth, 108(B4): 1—24. doi: 10.1029/2001JB000861. [28] Li D P, Du J J, Ma Y S, et al.2015. Active faults and dip slip rates along the northern margins of the Huashan Mountain and Weinan loess tableland in the southeastern Weihe Graben, Central China[J]. Journal of Asian Earth Sciences, 114(1): 266—278. doi: 10.1016/j.jseaes.2015.08.013. [29] Liu J, Zhang P, Lease R O, et al.2013. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology[J]. Tectonophysics, 584(1): 281—296. doi: 10.1016/j.tecto.2012.01.025. [30] Oskin M E, Burbank D.2007. Transient landscape evolution of basement-cored uplifts: Example of the Kyrgyz Range, Tian Shan[J]. Journal of Geophysical Research: Earth Surface, 112(F3): 1—20. doi: 10.1029/2006JF000563. [31] Perron J T, Royden L.2013. An integral approach to bedrock river profile analysis[J]. Earth Surface Processes and Landforms, 38(6): 570—576. doi: 10.1002/esp. 3302. [32] Pritchard D, Roberts G G, White N J, et al.2009. Uplift histories from river profiles[J]. Geophysical Research Letter, 36(24): 1—5. doi: 10.1029/2009GL040928. [33] Rao G, Lin A M, Yan B, et al.2014. Tectonic activity and structural features of active intracontinental normal faults in the Weihe Graben, central China[J]. Tectonophysics, 636:270—285. doi: 10.1016/j.tecto.2014.08.019. [34] Rao G, Lin A M, Yan B.2015. Paleoseismic study on active normal faults in the southeastern Weihe Graben, Central China[J]. Journal of Asian Earth Sciences, 114(1): 212—225. doi: 10.1016/j.jseaes.2015.04.031. [35] Shelef E, Haviv I, Goren L.2018. A potential link between waterfall recession rate and bedrock channel concavity[J]. Journal of Geophysical Research: Earth Surface, 123(5): 905—923. doi: 10.31223/osf.io/5u9eg. [36] Snyder N P, Whipple K X, Tucker G E, et al.2000. Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California[J]. Geological Society of America Bulletin, 112(8): 1250—1263. doi: 10.1130/0016-7606(2000)112<1250: LRTTFD>2.3.CO; 2. [37] Wang J M.1987. The Fenwei rift and its recent periodic activity[J]. Tectonophysics, 133(3-4): 257—275. doi: 10.1016/0040-1951(87)90269—1. [38] Wang Y Z, Zhang H P, Zheng D W, et al.2017. Coupling slope-area analysis, integral approach and statistic tests to steady-state bedrock river profile analysis[J]. Earth Surface Dynamics, 5:145—160. doi: 10.5194/esurf-2016—40. [39] Wang Y Z, Zhang H P, Zheng D W, et al.2019. The distribution of active rock uplift in the interior of the western Qilian Shan, NE Tibetan plateau: Inference from bedrock channel profiles[J]. Tectonophysics, 759:15—29. doi: 10.1016/j.tecto.2019.04.001. [40] Wang Y Z, Zheng D W, Pang J Z, et al.2018. Using slope-area and apatite fission track analysis to decipher the rock uplift pattern of the Yumu Shan: New insights into the growth of the NE Tibetan plateau[J]. Geomorphology, 308:118—128. doi: 10.1016/j.geomorph.2018.02.006. [41] Whipple K X, Tucker G E.1999. Dynamics of the stream power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research: Solid Earth, 104(B8): 17661—17674. doi: 10.1029/1999JB900120. [42] Whipple K X, Tucker G E.2002. Implications of sediment-flux-dependent river incision models for landscape evolution[J]. Journal of Geophysical Research, 107(B2): 1—20. doi: 10.1029/2000JB000044. [43] Whittaker A C, Boulton S J.2012. Tectonic and climatic controls on knickpoint retreat rates and landscape response times[J]. Journal of Geophysical Research: Earth Surface, 117(F2): 1—19. doi: 10.1029/2011JF002157. [44] Wobus C, Whipple K X, Kirby E, et al.2006. Tectonics from topography: Procedures, promise, and pitfalls[J]. Special Paper of the Geological Society of America, 398(Special Issue): 55—74. doi: 10.1130/2006.2398(04). [45] Zhang H P, Kirby E, Pitlick J, et al.2017. Characterizing the transient geomorphic response to base-level fall in the northeastern Tibetan plateau[J]. Journal of Geophysical Research: Earth Surface, 122(2): 1—27. doi: 10.1002/2015JF003715. |