[1] 毕海芸, 郑文俊, 曾江源, 等. 2017. SfM摄影测量方法在活动构造定量研究中的应用[J]. 地震地质, 39(4): 656—674. doi: 10.3969/j.issn.0253-4967.2017.04.003. BI Hai-yun, ZHENG Wen-jun, ZENG Jiang-yuan, et al.2017. Application of SfM photogrammetry method to the quantitative study of active tectonics[J]. Seismology and Geology, 39(4): 656—674(in Chinese). [2] 陈桂华, 徐锡伟, 闻学泽, 等. 2006. 数字航空摄影测量学方法在活动构造中的应用[J]. 地球科学(中国地质大学学报), 31(3): 405—410. CHEN Gui-hua, XU Xi-wei, WEN Xue-ze, et al.2006. Application of digital aerophotogrammetry in active tectonics[J]. Earth Science(Journal of China University of Geosciences), 31(3): 405—410(in Chinese). [3] 陈涛, 张培震, 刘静, 等. 2014. 机载激光雷达技术与海原断裂带的精细地貌定量化研究[J]. 科学通报, 59(14): 1293—1304. CHEN Tao, ZHANG Pen-zhen, LIU Jing, et al.2014. Quantitative study of tectonic geomorphology along Haiyuan Fault based on airborne LiDAR[J]. Chinese Science Bulletin, 59(14): 1293—1304(in Chinese). [4] 邓起东, 陈立春, 冉勇康. 2004. 活动构造定量研究与应用[J]. 地学前缘, 11(4): 383—392. DENG Qi-dong, CHEN Li-chun, RAN Yong-kang.2004. Quantitative studies and applications of active tectonics[J]. Earth Science Frontiers, 11(4): 383—392(in Chinese). [5] 李新男. 2014. 香山-天景山断裂带西段晚第四纪运动学特征与古地震研究 [D]. 北京: 中国地震局地质研究所. LI Xin-nan.2014. Late Quaternary kinematics characteristics and paleoearthquakes along the western segment of the Xiangshan-Tianjingshan Fault [D]. Institute of Geology, China Earthquake Administration, Beijing(in Chinese). [6] 李新男, 李传友. 2015. 香山-天景山断裂带西段晚第四纪的特征滑动行为[J]. 地震地质, 37(2): 482—495. doi: 10.3969/j.issn.0253-4967.2015.02.011. LI Xin-nan, LI Chuan-you.2015. Characteristic slip behavior analysis of the western segment of Xiangshan-Tianjingshan fault zone since late Quaternary[J]. Seismology and Geology, 37(2): 482—495(in Chinese). [7] 李新男, 李传友, 张培震, 等. 2016. 香山-天景山断裂带西段的运动性质变化及其成因机制[J]. 地震地质, 38(3): 732—746. doi: 10.3969 /j.issn.0253-4967.2016.03.018. LI Xin-nan, LI Chuan-you, ZHANG Pei-zhen, et al.2016. Changes in fault movement property and genetic mechanism on the western segment of the Xiangshan-Tianjingshan fault zone[J]. Seismology and Geology, 38(3): 732—746(in Chinese). [8] 刘静, 陈涛, 张培震, 等. 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报, 58(1): 41—45. LIU Jing, CHEN Tao, ZHANG Pei-zhen, et al.2013. Illuminating the active Haiyuan Fault, China by airborne light detection and ranging[J]. Chinese Science Bulletin, 58(1): 41—45(in Chinese). [9] 马洪超. 2011. 激光雷达测量技术在地学中的若干应用[J]. 地球科学(中国地质大学学报), 36(2): 347—354. MA Hong-chao.2011. Review on applications of LiDAR mapping technology to geosciences[J]. Earth Science(Journal of China University of Geosciences), 36(2): 347—354(in Chinese). [10] 任治坤, 陈涛, 张会平, 等. 2014. LiDAR技术在活动构造研究中的应用[J]. 地质学报, 88(6): 1196—1207. REN Zhi-kun, CHEN Tao, ZHANG Hui-ping, et al.2014. LiDAR survey in active tectonics studies: An introduction and overview[J]. Acta Geologica Sinica, 88(6): 1196—1207(in Chinese). [11] 沈永林, 李晓静, 吴立新. 2011. 基于航空影像和LiDAR数据的海地地震滑坡识别研究[J]. 地理与地理信息科学, 27(1): 16—20. SHEN Yong-lin, LI Xiao-jing, WU Li-xin.2011. Detection of Haiti earthquake induced landsides from aerial images and LiDAR data[J]. Geography and Geo-Information Science, 27(1): 16—20(in Chinese). [12] 史兴民, 杨景春. 2003. 河流地貌对构造活动的响应[J]. 水土保持研究, 10(3): 48—51. SHI Xing-min, YANG Jing-chun.2003. Response of fluvial geomorphology to tectonic movement[J]. Research of Soil and Water Conservation, 10(3): 48—51(in Chinese). [13] 隋立春, 张熠斌, 柳艳, 等. 2010. 基于改进的数学形态学算法的LiDAR点云数据滤波[J]. 测绘学报, 39(4): 390—396. SUI Li-chun, ZHANG Yi-bin, LIU Yan, et al.2010. Filtering of airborne LiDAR point cloud data based on the adaptive mathematical morphology[J]. Acta Geodaetica et Cartographica Sinica, 39(4): 390—396(in Chinese). [14] 魏占玉, 何宏林, 高伟, 等. 2014. 基于Li DAR数据开展活动断层填图的实验研究: 以新疆独山子背斜-逆冲断裂带为例[J]. 地震地质, 36(3): 794—813. doi: 10.3969/j.issn.0253-4967.2014.03.019. WEI Zhan-yu, HE Hong-lin, GAO Wei, et al.2014. Experimental study of geologic mapping of active tectonics based on LiDAR data: A case of Dushanzi anticline-reverse fault zone in Xinjiang[J]. Seismology and Geology, 36(3): 794—813(in Chinese). [15] 张培震, 邓起东, 张竹琪, 等. 2013. 中国大陆的活动断裂、 地震灾害及其动力过程[J]. 中国科学(D辑), 43(10): 1607—1620. ZHANG Pei-zhen, DENG Qi-dong, ZHANG Zhu-qi, et al.2013. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Science in China(Ser D), 43(10): 1607—1620(in Chinese). [16] 张培震, 李传友, 毛凤英. 2008. 河流阶地演化与走滑断裂滑动速率[J]. 地震地质, 30(1): 44—57. ZHANG Pei-zhen, LI Chuan-you, MAO Feng-ying.2008. Strath terrace formation and strike-slip faulting[J]. Seismology and Geology, 30(1): 44—57(in Chinese). [17] Ackermann F.1999. Airborne laser scanning-present status and future expectations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3): 64—67. [18] Arrowsmith J R, Zielke O.2009. Tectonic geomorphology of the San Andreas fault zone from high resolution topography: An example from the Cholame segment[J]. Geomorphology, 113(1-2): 70—81. [19] Avouac J P, Tapponnier P.1993. Kinematic model of active deformation in central Asia[J]. Geophysical Research Letters, 20(10): 895—898. [20] Axelsson P.1999. Processing of laser scanner data: Algorithms and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3): 138—147. [21] Baltsavias E P.1999. Airborne laser scanning: Basic relations and formulas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3): 199—214. [22] Bi H, Zheng W, Ge W, et al.2018. Constraining the distribution of vertical slip on the South Heli Shan Fault(northeastern Tibet)from high-resolution topographic data[J]. Journal of Geophysical Research: Solid Earth, 123(3): 2484—2501. [23] Cowgill E.2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen River site along the AltynTagh Fault, NW China[J]. Earth and Planetary Science Letters, 254(3-4): 239—255. [24] Crone A J, Haller K M.1991. Segmentation and the coseismic behavior of Basin and Range normal faults: Examples from east-central Idaho and southwestern Montana, USA[J]. Journal of Structural Geology, 13(2): 151—164. [25] Cunningham D, Grebby S, Tansey K, et al.2006. Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia[J]. Geophysical Research Letters, 33(20): L20308. [26] Gaudemer Y, Tapponnier P, Meyer B, et al.1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu(China)[J]. Geophysical Journal International, 120(3): 599—645. [27] Haddon E K, Amos C B, Zielke O, et al.2016. Surface slip during large Owens Valley earthquakes[J]. Geochemistry, Geophysics, Geosystems, 17(6): 2239—2269. [28] Hu Y.2003. Automated extraction of digital terrain models, roads and buildings using airborne LiDAR data [D]. Department of Geomatics Engineering, the University of Calgary, Calgary, Alberta, Canada. [29] Hudnut K W, Borsa A, Glennie C, et al.2002. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California, earthquake(MW7.1)from airborne laser swath mapping[J]. Bulletin of the Seismological Society of America, 92(4): 1570—1576. [30] Kirby E, Harkins N, Wang E, et al.2007. Slip rate gradients along the eastern Kunlun Fault[J]. Tectonics, 26(2): TC2010. [31] Li C, Zhang P Z, Yin J, et al.2009. Late Quaternary left-lateral slip rate of the Haiyuan Fault, northeastern margin of the Tibetan plateau[J]. Tectonics, 28(5): TC5010. [32] Li X N, Li C Y, Pierce I K D, et al.2019. New slip rates for the Tianjingshan Fault using optically stimulated luminescence, GPS, and paleoseismic data, NE Tibet, China[J]. Tectonophysics, 755:64—74. [33] Li X N, Li C Y, Wesnousky S G, et al.2017. Paleoseismology and slip rate of the western Tianjingshan Fault of NE Tibet, China[J]. Journal of Asian Earth Sciences, 146:304—316. [34] Machette M N, Personius S F, Nelson A R, et al.1991. The Wasatch fault zone, Utah: Segmentation and history of Holocene earthquakes[J]. Journal of Structural Geology, 13(2): 137—149. [35] Oskin M E, Arrowsmith J R, Corona A H, et al.2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LiDAR[J]. Science, 335(6069): 702—705. [36] Ouédraogo M M, Degré A, Debouche C, et al.2014. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds[J]. Geomorphology, 214:339—355. [37] Schulz W H.2007. Landslide susceptibility revealed by LiDAR imagery and historical records, Seattle, Washington[J]. Engineering Geology, 89(1-2): 67—87. [38] Tapponnier P, Zhiqin X, Roger F, et al.2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671—1677. [39] Van der Woerd J, Tapponnier P, Ryerson F J, et al.2002. Uniform postglacial slip-rate along the central 600km of the Kunlun Fault(Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology[J]. Geophysical Journal International, 148(3): 356—388. [40] Wechsler N, Rockwell T K, Ben-Zion Y.2009. Application of high resolution DEM data to detect rock damage from geomorphic signals along the central San Jacinto Fault[J]. Geomorphology, 113(1-2): 82—96. [41] Yin A, Rumelhart P E, Butler R, et al.2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 114(10): 1257—1295. [42] Yuan D Y, Ge W P, Chen Z W, et al.2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies[J]. Tectonics, 32(5): 1358—1370. [43] Zhang P Z, Molnar P, Xu X.2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan plateau[J]. Tectonics, 26(5): TC5010. [44] Zhang P Z, Shen Z, Wang M, et al.2004. Continuous deformation of the Tibetan plateau from global positioning system data[J]. Geology, 32(9): 809—812. [45] Zheng W J, Zhang P Z, He W G, et al.2013a. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan plateau: Evidence from decadal GPS measurements and late Quaternary slip rates on faults[J]. Tectonophysics, 584:267—280. [46] Zheng W J, Zhang P Z, Ge W, et al.2013b. Late Quaternary slip rate of the South Heli Shan Fault(northern Hexi Corridor, NW China)and its implications for northeastward growth of the Tibetan plateau[J]. Tectonics, 32(2): 271—293. [47] Zielke O, Arrowsmith J R, Ludwig L G, et al.2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault[J]. Science, 327(5969): 1119—1122. |