地震地质 ›› 2020, Vol. 42 ›› Issue (1): 198-211.DOI: 10.3969/j.issn.0253-4967.2020.01.013
收稿日期:
2019-01-30
出版日期:
2020-02-20
发布日期:
2020-02-20
作者简介:
〔作者简介〕 党嘉祥, 男, 1981年生, 2018年于中国地震局地质研究所获构造物理专业博士学位, 从事高温高压岩石力学研究, E-mail: dangjiaxiang@ies.ac.cn。
基金资助:
DANG Jia-xiang(), ZHOU Yong-sheng
Received:
2019-01-30
Online:
2020-02-20
Published:
2020-02-20
摘要:
地震精定位结果显示, 大陆地震多数集中于大陆地壳的多震层内, 该多震层向下收敛于中部地壳的脆塑性转化带。 地壳脆塑性转化带的主要成分为花岗质岩石, 前人通常用石英-斜长石的组合代替花岗岩进行变形研究, 反演转化带的深度和变形特征, 并且认为花岗岩的变形强度由弱项矿物——石英的塑性变形控制。 近年来, 实验和野外研究均表明钾长石的变形强度高于石英和斜长石。 大应变量变形实验和野外韧性剪切带的研究结果显示, 在中地壳脆塑性转化带内, 钾长石变形以脆性破裂为主, 斜长石和石英通常表现为动态重结晶。 因此, 用石英和斜长石的组合体代替花岗岩来反演断层的变形特征, 无法全面、 真实地解释断层深部脆塑性转化带的变形特征。 文中总结了花岗岩在野外和实验变形条件下的研究结果, 并分析了花岗岩的主要组成矿物——石英、 斜长石和钾长石的变形特征以及其温压条件的不同步性, 讨论了断层深部脆塑性转化带的失稳条件。
中图分类号:
党嘉祥, 周永胜. 花岗质岩石在脆塑性转化域的变形机制[J]. 地震地质, 2020, 42(1): 198-211.
DANG Jia-xiang, ZHOU Yong-sheng. DEFORMATION MECHANISM OF GRANITIC ROCKS IN BRITTLE-PLASTIC TRANSITION ZONE[J]. SEISMOLOGY AND GEOLOGY, 2020, 42(1): 198-211.
图 1 石英动态重结晶的3种模式(Stipp et al., 2002) a 膨突重结晶; b 亚颗粒旋转重结晶形成的核幔构造; c 颗粒边界迁移形成的缝合线状
Fig. 1 Characteristic microstructures of the dynamic recrystallization of quartz(after Stipp et al., 2002).
图 2 a 不同实验条件下花岗岩变形应力-应变曲线(Dang et al., 2017);b 变形样品的最大强度和19%应变时强度随温度的变化
Fig. 2 Stress-strain curves for granite samples deformed under different confining pressures and temperatures (Dang et al., 2017)(a). Peak strengths and strength at 19% strain of deformed samples versus temperature(b).
图 3 不同温压条件下变形样品的照片与温压条件对应图
Fig. 3 Photographs of deformed samples subjected to a constant strain rate at different temperatures and with different confining pressures.
表1 不同实验温度下斜长石和钾长石的变形特征(Dang et al., 2017)
Table1 Deformation characters of plagioclase and K-feldspar under different experimental temperatures(after Dang et al., 2017)
表2 不同变质环境中斜长石和钾长石的变形特征(Trouw et al., 2010)
Table2 Deformation characters of plagioclase and K-feldspar under different deformation conditions(after Trouw et al., 2010)
图 4 950℃、 400MPa条件下扭转变形样品的微观结构(Dang et al., 2017) 白色箭头指示重结晶的斜长石, 黄色箭头指示拉伸的石英。 Mic 钾长石; Q 石英; Pla 斜长石
Fig. 4 Microstructure of a sample deformed by torsion at 950℃, 400MPa(after Dang et al., 2017).
图 5 花岗岩半脆性剪切变形微观结构(Pec et al., 2016) a、 b 低剪应变量的变形样品; c、 d 高剪应变量变形样品。 黄色虚线为局部滑动带边界; 黄色箭头指示卸载引起的微破裂。PAM 钾长石主导的部分非晶质物质; AM 非晶质; Qtz 石英; Plg 斜长石; Kfs 钾长石; Bt 黑云母; Wm 白云母
Fig. 5 Microstructure of general shear deformed granite under semi-brittle condition(after Pec et al., 2016).
图 6 花岗岩初始样品和变形样品滑动带内的主要成分统计图(Pec et al., 2016) Qtz 石英; Plg 斜长石; Kfs 钾长石; Bt 黑云母; Wm 白云母
Fig. 6 Composition of initial granite and material within slip zones(after Pec et al., 2016).
[1] | 李乐, 陈棋福, 陈颙, 2007. 首都圈地震活动构造成因的小震精定位分析[J]. 地球物理学进展, 22(1): 24—34. |
LI Le, CHEN Qi-fu, CHEN Yong.2007. Relocated seismicity in Big Beijing area and its tectonic implication[J]. Progress in Geophysics, 22(1): 24—34(in Chinese). | |
[2] | 宋美琴, 郑勇, 葛粲, 等, 2012. 山西地震带中小震精确位置及其显示的山西地震构造特征[J]. 地球物理学报, 55(2): 513—525. |
SONG Mei-qin, ZHENG Yong, GE Can, et al.2012. Relocation of small to moderate earthquakes in Shanxi Province and its relation to the seismogenic structures[J]. Chinese Journal of Geophysics, 55(2): 513—525(in Chinese). | |
[3] | 周永胜, 何昌荣, 2000. 地壳岩石变形行为的转变及其温压条件[J]. 地震地质, 22(2): 167—178. |
ZHOU Yong-sheng, HE Chang-rong.2000. Deformation behavior transition of crustal rocks and its temperature-pressure conditions[J]. Seismology and Geology, 22(2): 167—178(in Chinese). | |
[4] | 周永胜, 何昌荣, 杨晓松. 2008. 中地壳韧性剪切带中的水与变形机制[J]. 中国科学, 38(7): 819—832. |
ZHOU Yong-sheng, HE Chang-rong, YANG Xiao-song.2008. Water and deformation mechanism in the middle crust ductile shear zone[J]. Science in China, 38(7): 819—832(in Chinese). | |
[5] | Anderson J L, Osborne R H, Palmer D F.1983. Cataclastic rocks of the San Gabriel Fault: An expression of deformation at deeper crustal levels in the San Andreas fault zone[J]. Tectonophysics, 98(3): 209—251. |
[6] | Behrmann J H, Mainprice D.1987. Deformation mechanisms in a high-temperature quartz-feldspar mylonite: Evidence for superplastic flow in the lower continental crust[J]. Tectonophysics, 140(2): 297—305. |
[7] | Borges F S, White S H.1980. Microstructural and chemical studies of sheared anorthosites, Roneval, South Harris[J]. Journal of Structural Geology, 2(1-2): 273—280. |
[8] | Dang J, Zhou Y, He C, et al.2018. Mineralogical compositions of fault rocks from surface ruptures of Wenchuan earthquake and implication of mineral transformation during the seismic cycle along Yingxiu-Beichuan Fault, Sichuan Province, China[J]. Mineralogy and Petrology, 112(3): 341—355. |
[9] | Dang J, Zhou Y, Rybacki E, et al.2017. An experimental study on the brittle-plastic transition during deformation of granite[J]. Journal of Asian Earth Sciences, 139:30—39. |
[10] | Dell'Angelo L N, Tullis J.1988. Experimental deformation of partially melted granitic aggregates[J]. Journal of Metamorphic Geology, 6(4): 495—515. |
[11] | Dell'Angelo L N, Tullis J, Yund R A.1987. Transition from dislocation creep to melt-enhanced diffusion creep in fine-grained granitic aggregates[J]. Tectonophysics, 139(3-4): 325—332. |
[12] | Dunlap W J, Hirth G, Teyssier C.1997. Thermomechanical evolution of a ductile duplex[J]. Tectonics, 16(6): 983—1000. |
[13] | Evans J P.1988. Deformation mechanisms in granitic rocks at shallow crustal levels[J]. Journal of Structural Geology, 10(5): 437—443. |
[14] | Fitz Gerald J D, Stünitz H.1993. Deformation of granitoids at low metamorphic grade. I: Reactions and grain size reduction[J]. Tectonophysics, 221(3-4): 269—297. |
[15] | Gapais D.1989. Shear structures within deformed granites: Mechanical and thermal indicators[J]. Geology, 17(12): 1144—1147. |
[16] | Gates A E, Glover L.1989. Alleghanian tectono-thermal evolution of the dextral transcurrent Hylas zone, Virginia Piedmont, USA[J]. Journal of Structural Geology, 11(4): 407—419. |
[17] | Grove T, Baker M, Kinzler R.1984. Coupled CaAl-NaSi diffusion in plagioclase feldspar: Experiments and applications to cooling rate speedometry[J]. Geochimica et Cosmochimica Acta, 48(10): 2113—2121. |
[18] | Hadizadeh J, Tullis J.1992. Cataclastic flow and semibrittle deformation of anorthite[J]. Journal of Structural Geology, 14(1): 57—63. |
[19] | Hay R S, Evans B.1987. Chemically induced grain boundary migration in calcite: Temperature dependence, phenomenology, and possible applications to geologic systems[J]. Contributions to Mineralogy and Petrology, 97(1): 127—141. |
[20] | Hirth G, Tullis J.1989. The effects of pressure and porosity on the micromechanics of the brittle-ductile transition in quartzite[J]. Journal of Geophysical Research, 94(B12): 17825—17838. |
[21] | Hirth G, Tullis J.1992. Dislocation creep regimes in quartz aggregates[J]. Journal of Structural Geology, 14(2): 145—159. |
[22] | Hirth G, Tullis J.1994. The brittle-plastic transition in experimentally deformed quartz aggregates[J]. Journal of Geophysical Research, 99(B6): 11731—11747. |
[23] | Lafrance B, John B E, Frost B R.1998. Ultra high-temperature and subsolidus shear zones: Examples from the Poe Mountain anorthosite, Wyoming[J]. Journal of Structural Geology, 20(7): 945—955. |
[24] | Marshall D, Mclaren A.1977. Elastic twinning in experimentally deformed plagioclase feldspars[J]. Physica Status Solidi(a), 41(1): 231—240. |
[25] | Mecklenburgh J, Rutter E H.2003. On the rheology of partially molten synthetic granite[J]. Journal of Structural Geology, 25(10): 1575—1585. |
[26] | Michibayashi K.1996. The role of intragranular fracturing on grain size reduction in feldspar during mylonitization[J]. Journal of Structural Geology, 18(1): 17—25. |
[27] | Paquet J, François P.1980. Experimental deformation of partial melted granitic rocks at 600~900℃ and 250MPa confining pressure[J]. Tectonophysics, 68(1-2): 131—146. |
[28] | Paquet J, Francois P, Nedelec A.1981. Effect of partial melting on rock deformation: Experimental and natural evidences on rocks of granitic compositions[J]. Tectonophysics, 78(1-4): 545—565. |
[29] | Passchier C W, Trouw R A J.2005. Microtectonics[M]. Springer, Berlin. |
[30] | Pec M, Stunitz H, Heilbronner R.2012. Semi-brittle deformation of granitoid gouges in shear experiments at elevated pressures and temperatures[J]. Journal of Structural Geology, 38:200—221. |
[31] | Pec M, Stunitz H, Heilbronner R, et al.2016. Semi-brittle flow of granitoid fault rocks in experiments[J]. Journal of Geophysical Research: Solid Earth, 121(3): 1677—1705. |
[32] | Pryer L L.1993. Microstructures in feldspars from a major crustal thrust zone: The Grenville Front, Ontario, Canada[J]. Journal of Structural Geology, 15(1): 21—36. |
[33] | Ree J-H, Kim H S, Han R, et al.2005. Grain-size reduction of feldspars by fracturing and neocrystallization in a low-grade granitic mylonite and its rheological effect[J]. Tectonophysics, 407(3-4): 227—237. |
[34] | Rosenberg C L, Stunitz H.2003. Deformation and recrystallization of plagioclase along a temperature gradient: An example from the Bergell tonalite[J]. Journal of Structural Geology, 25(3): 389—408. |
[35] | Rutter E H, Brodie K H.2004a. Experimental grain size-sensitive flow of hot-pressed Brazilian quartz aggregates[J]. Journal of Structural Geology, 26(11): 2011—2023. |
[36] | Rutter E H, Brodie K H.2004b. Experimental intracrystalline plastic flow in hot-pressed synthetic quartzite prepared from Brazilian quartz crystals[J]. Journal of Structural Geology, 26(2): 259—270. |
[37] | Rutter E H, Brodie K H, Irving D H.2006. Flow of synthetic, wet, partially molten “granite”under undrained conditions: An experimental study[J]. Journal of Geophysical Research: Solid Earth, 111(B6): B06407. |
[38] | Rutter E H, Neumann D H K.1995. Experimental deformation of partially molten Westerly granite under fluid-absent conditions, with implications for the extraction of granitic magmas[J]. Journal of Geophysical Research, 100(B8): 15697. |
[39] | Rybacki E, Dresen G.2004. Deformation mechanism maps for feldspar rocks[J]. Tectonophysics, 382(3-4): 173—187. |
[40] | Rybacki E, Dresen G.2000. Dislocation and diffusion creep of synthetic anorthite aggregates[J]. Journal of Geophysical Research Atmospheres, 105(B11): 26017—26036. |
[41] | Rybacki E, Gottschalk M, Wirth R, et al.2006. Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates[J]. Journal of Geophysical Research, 111(B3): 851—851. |
[42] | Sibson R H.1977. Fault rocks and fault mechanisms[J]. Journal of the Geological Society, 133(3): 191—213. |
[43] | Stipp M, Stünitz H, Heilbronner R, et al.2002. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700℃[J]. Journal of Structural Geology, 24(12): 1861—1884. |
[44] | Stipp M, Tullis J.2003. The recrystallized grain size piezometer for quartz[J]. Geophysical Research Letters, 30(21): 2088—2093. |
[45] | Stockhert B, Brix M R, Kleinschrodt R, et al.1999. Thermochronometry and microstructures of quartz: A comparison with experimental flow laws and predictions on the temperature of the brittle-plastic transition[J]. Journal of Structural Geology, 21(3): 351—369. |
[46] | Stünitz H, Fitz Gerald J.1993. Deformation of granitoids at low metamorphic grade. Ⅱ: Granular flow in albite-rich mylonites[J]. Tectonophysics, 221(3-4): 299—324. |
[47] | Trouw R, Passchier C, Wiersma D.2010. Atlas of Mylonites- and Related Microstructures[M]. Springer, Berlin. |
[48] | Tullis J, Dell'Angelo L N, Yund R A.1990. Ductile shear zones from brittle precursors in feldspathic rocks: The possible role of dynamic recrystallization [A]∥Duba A, Durham W, Handin J, et al. 2013. The Brittle-Ductile Transition in Rocks. American Geophysical Union: Geophysical Monograph Series(56): 67—82. |
[49] | Tullis J, Yund R.1985, Dynamic recrystallization of feldspar: A mechanism for ductile shear zone formation[J]. Geology, 13(4): 238—241. |
[50] | Tullis J, Yund R.1991. Diffusion creep in feldspar aggregates: Experimental evidence[J]. Journal of Structural Geology, 13(9): 987—1000. |
[51] | Tullis J, Yund R.1992. The brittle-ductile transition in feldspar aggregates: An experimental study[J]. International Geophysics, 51:89—117. |
[52] | Tullis J, Yund R A.1977. Experimental deformation of dry Westerly granite[J]. Journal of Geophysical Research, 82(36): 5705—5718. |
[53] | Tullis J, Yund R A.1987. Transition from cataclastic flow to dislocation creep of feldspar: Mechanisms and microstructures[J]. Geology, 15(15): 606—609. |
[54] | Tullis J, Yund R, Farver J.1996. Deformation-enhanced fluid distribution in feldspar aggregates and implications for ductile shear zones[J]. Geology, 24(1): 63—66. |
[55] | White J C, Mawer C K.1986. Extreme ductility of feldspars from a mylonite, Parry Sound, Canada[J]. Journal of Structural Geology, 8(8): 133—137. |
[56] | Xiao X, Wirth R, Dresen G.2002. Diffusion creep of anorthite-quartz aggregates[J]. Journal of Geophysical Research: Solid Earth, 107(B11): 2279. |
[57] | Yund R.1986. Interdiffusion of NaSi-CaAl in peristerite[J]. Physics and Chemistry of Minerals, 13(1): 11—16. |
[58] | Yund R, Quigley J, Tullis J.1989. The effect of dislocations on bulk diffusion in feldspars during metamorphism[J]. Journal of Metamorphic Geology, 7(3): 337—341. |
[59] | Zulauf G.2001. Structural style, deformation mechanisms and paleodifferential stress along an exposed crustal section: Constraints on the rheology of quartzofeldspathic rocks at supra- and infrastructural levels(Bohemian Massif)[J]. Tectonophysics, 332(1): 211—237. |
[1] | 雷蕙如, 周永胜. 大陆断层脆塑性转化带强度与孕震深度的定量研究[J]. 地震地质, 2023, 45(1): 29-48. |
[2] | 林旭, 刘海金, 刘静, 吴中海, 李兆宁, 陈济鑫, 李玲玲, 胡程伟. 黄河流域碎屑钾长石Pb同位素物源示踪[J]. 地震地质, 2022, 44(4): 944-960. |
[3] | 牛露, 周永胜, 姚文明, 马玺, 何昌荣. 花岗岩非稳态流变实验[J]. 地震地质, 2021, 43(1): 20-35. |
[4] | 覃金堂, 陈杰, 李涛. 阿尔金断裂带中段现代沉积物样品钾长石红外激发后红外释光的残留信号——对年轻古地震事件测年的指示意义[J]. 地震地质, 2020, 42(4): 981-992. |
[5] | 李世念, 齐文博, 刘力强. 超动态变形场长时间观测系统[J]. 地震地质, 2019, 41(6): 1529-1538. |
[6] | 张豫宏, 周永胜, 姚文明, 何昌荣, 党嘉祥. 水对Carrara大理岩强度和变形机制影响的实验研究[J]. 地震地质, 2017, 39(1): 54-66. |
[7] | 宋娟, 周永胜, 钟柯, 刘贵, 刘照星. 高温高压条件下角闪岩脆-塑性转化实验研究[J]. 地震地质, 2015, 37(1): 81-93. |
[8] | 余中元, 闵伟, 韦庆海, 赵斌, 马艳春. 松辽盆地北部反转构造的几何特征、变形机制及其地震地质意义——以大安-德都断裂为例[J]. 地震地质, 2015, 37(1): 13-32. |
[9] | 宋娟, 周永胜, 杨伟红. 丽江MS7.0地震余震深度揭示出的中地壳脆塑性转化特征[J]. 地震地质, 2014, 36(1): 186-195. |
[10] | 刘贵, 周永胜. 长英质岩石的流变学特征及其影响因素[J]. 地震地质, 2012, (2): 365-383. |
[11] | 张媛媛, 周永胜. 断层脆塑性转化带的强度与变形机制及其流体和应变速率的影响[J]. 地震地质, 2012, 34(1): 172-194. |
[12] | 万景林, 郑德文, 郑文俊, 王伟涛. MDD法和裂变径迹法相结合模拟样品的低温热历史——以柴达木盆地北缘赛什腾山中新生代构造演化为例[J]. 地震地质, 2011, 33(2): 369-382. |
[13] | 周永胜, 何昌荣, 杨恒. 水对下地壳基性岩脆塑性转化影响的实验研究[J]. 地震地质, 2004, 26(3): 472-483. |
[14] | 林传勇, 徐锡伟, 史兰斌, 王非. 西藏金沙江缝合带一些岩石的初步研究(Ⅰ):花岗岩[J]. 地震地质, 2004, 26(2): 209-220. |
[15] | 周永胜, 何昌荣. 地壳主要岩石流变参数及华北地壳流变性质研究[J]. 地震地质, 2003, 25(1): 109-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||