地震地质 ›› 2019, Vol. 41 ›› Issue (3): 704-725.DOI: 10.3969/j.issn.0253-4967.2019.03.011
商咏梅1, 杨彧2, 杨晓松1
收稿日期:
2018-06-28
修回日期:
2018-12-25
出版日期:
2019-06-20
发布日期:
2019-07-28
通讯作者:
杨晓松,男,1959年生,研究员,主要从事实验物理学研究,E-mail:xsyang@ies.ac.cn。
作者简介:
商咏梅,女,1989年生,2018年于中国地震局地质研究所获构造地质学专业博士学位,主要从事深部构造地质学及高温高压实验研究,电话:010-62009010,E-mail:Shangyongmei7576@163.com。
基金资助:
SHANG Yong-mei1, YANG Yu2, YANG Xiao-song1
Received:
2018-06-28
Revised:
2018-12-25
Online:
2019-06-20
Published:
2019-07-28
摘要: 地震波各向异性主要受岩石中矿物晶格优选方位(Crystallographic Preferred Orientation,CPO)的影响,橄榄石的CPO控制着上地幔的地震波各向异性。将岩石中矿物的CPO与全岩地震波各向异性相结合,可以解释在全球不同构造单元观测到的地震波各向异性,从而进行构造变形和动力学过程分析。文中在总结岩石圈主要各向异性矿物的CPO和各向异性特征的基础上,以青藏高原东南缘岩石圈地幔包体为例,对其显微组构和地震波各向异性进行研究,结果显示青藏高原东南缘岩石圈地幔的构造环境发生改变,岩石圈地幔无法解释观测到的剪切波分裂(SKS)地震波各向异性,需要考虑其他各向异性来源。由此可见,研究岩石圈地幔矿物的CPO对合理约束地球物理测量资料和分析岩石圈变形特征至关重要。
中图分类号:
商咏梅, 杨彧, 杨晓松. 岩石圈主要各向异性矿物的CPO特征及其对岩石圈动力学研究的启示[J]. 地震地质, 2019, 41(3): 704-725.
SHANG Yong-mei, YANG Yu, YANG Xiao-song. CRYSTALLOGRAPHIC PREFERRED ORIENTATION(CPO) OF ANISOTROPIC MINERALS IN THE LITHOSPHERE AND ITS SIGNIFICANCE TO THE STUDY OFLITHOSPHERE DYNAMICS[J]. SEISMOLOGY AND GEOLOGY, 2019, 41(3): 704-725.
金振民, 金淑燕. 1994. 橄榄石晶格优选方位和上地幔地震波速各向异性[J]. 地球物理学报, 37(4):469-477. JIN Zhen-min, JIN Shu-yan. 1994. Lattice preferred orientation of olivines and seismic anisotropy in the upper mantle[J]. Chinese Journal of Geophysics, 37(4):469-477(in Chinese). 孙长青, 雷建设, 李聪, 等. 2013. 云南地区地壳各向异性及其动力学意义[J]. 地球物理学报, 56(12):4095-4105. SUN Chang-qing, LEI Jian-she, LI Cong, et al. 2013. Crustal anisotropy beneath the Yunnan region and dynamic implications[J]. Chinese Journal of Geophysics, 56(12):4095-4105(in Chinese). 孙圣思, 嵇少丞. 2011. 大洋板块俯冲带地震波各向异性及剪切波分裂的成因机制[J]. 大地构造与成矿学, 35(4):628-647. SUN Sheng-si, JI Shao-cheng. 2011. On the formation of seismic anisotropy and shear wave splitting in oceanic subduction zones[J]. Geotectonic et Metallogenia, 35(4):628-647(in Chinese). 滕吉文, 张永谦, 阮小敏, 等. 2012. 地球内部壳幔介质地震各向异性与动力学响应[J]. 地球物理学报, 55(11):3648-3670. TENG Ji-wen, ZHANG Yong-qian, RUAN Xiao-min, et al. 2012. The seismic anisotropy of the crustal and mantle medium of the earth interior and its dynamic response[J]. Chinese Journal of Geophysics, 55(11):3648-3670(in Chinese). 王勤, 嵇少丞, 许志琴. 2007. 橄榄石的晶格优选定向, 含水量与地震波各向异性:对大陆俯冲带变形环境的约束[J]. 岩石学报, 23(12):3065-3077. WANG Qin, JI Shao-cheng, XU Zhi-qin. 2007. Lattice-preferred orientation, water content and seismic anisotropy of olivine:Implications for deformation environment of continental subduction zones[J]. Acta Petrologica Sinica, 23(12):3065-3077(in Chinese). 许志琴, 王勤, 梁凤华, 等. 2009. 电子背散射衍射(EBSD)技术在大陆动力学研究中的应用[J]. 岩石学报, 25(7):1721-1736. XU Zhi-qin, WANG Qin, LIANG Feng-hua, et al. 2009. Electron backscatter diffraction(EBSD)technique and its application to study of continental dynamics[J]. Acta Petrologica Sinica, 25(7):1721-1736(in Chinese). 杨晓松, 金振民, 马瑾. 等. 2002. 青藏高原北部异常SKS分裂成因的初步探讨:被熔体强化的岩石圈各向异性[J]. 地球物理学报, 45(6):821-831. YANG Xiao-song, JIN Zhen-min, MA Jin, et al. 2002. Genesis of SKS splitting in the north-central Qinghai-Xizang Plateau:Melt alignment enhanced lithosphere anisotropy[J]. Chinese Journal of Geophysics, 45(6):821-831(in Chinese). 杨彧, 陈建业, 杨晓松, 等. 2010. 部分熔融强化了青藏高原地壳的各向异性?[J]地震地质, 32(1):59-69. doi:10.3969/j.issn.0253-4967.2010.01.006. YANG Yu, CHEN Jian-ye, YANG Xiao-song, et al. 2010. Does alignment of melt enhance seismic anisotropy beneath Tibet?[J]. Seismology and Geology, 32(1):59-69(in Chinese). 张国苓, 杨晓松, 陈建业, 等. 2010. 中下地壳岩石弹性波各向异性的影响因素[J]. 地震地质, 32(2):327-337. doi:10.3969/j.issn.0253-4967.2010.02.016. ZHANG Guo-ling, YANG Xiao-song, CHEN Jian-ye, et al. 2010. The influencing factor of elastic anisotropy in middle to lower continental crust[J]. Seismology and Geology, 32(2):327-337(in Chinese). Almqvist B S, Mainprice D. 2017. Seismic properties and anisotropy of the continental crust:Predictions based on mineral texture and rock microstructure[J]. Reviews of Geophysics, 55(2):367-433. Baptiste V, Tommasi A, Vauchez A, et al. 2015. Deformation, hydration, and anisotropy of the lithospheric mantle in an active rift:Constraints from mantle xenoliths from the North Tanzanian Divergence of the East African Rift[J]. Tectonophysics, 639:34-55. Bastow I D, Pilidou S, Kendall J M, et al. 2010. Melt-induced seismic anisotropy and magma assisted rifting in Ethiopia:Evidence from surface waves[J]. Geochemistry Geophysics Geosystems, 11:Q0AB05. Brownlee S J, Hacker B R, Harlow G E, et al. 2013. Seismic signatures of a hydrated mantle wedge from antigorite crystal-preferred orientation(CPO)[J]. Earth and Planetary Science Letters, 375:395-407. Bunge H J. 1982. Texture Analysis in Materials Sciences[M]. Buttleworth, London:593. Cai Y, Wu J, Fang L, et al. 2016. Crustal anisotropy and deformation of the southeastern margin of the Tibetan plateau revealed by Pms splitting[J]. Journal of Asian Earth Sciences, 121:120-126. Cao Y, Jung H, Song S, et al. 2015. Plastic deformation and seismic properties in fore-arc mantles:A petrofabric analysis of the Yushigou harzburgites, North Qilian suture zone, NW China[J]. Journal of Petrology, 56(10):1897-1944. Chang L J, Wang C Y, Ding Z F, et al. 2015. Upper mantle anisotropy of the eastern Himalayan syntaxis and surrounding regions from shear wave splitting analysis[J]. Science China:Earth Sciences, 58(10):1872-1882. Chen Y, Zhang Z, Sun C, et al. 2013. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions[J]. Gondwana Research, 24(3):946-957. Couvy H, Frost D J, Heidelbach F, et al. 2004. Shear deformation experiments of forsterite at 11GPa -1400℃ in the multianvil apparatus[J]. European Journal of Mineralogy, 16(6):877-889. Falus G, Tommasi A, Ingrin J, et al. 2008. Deformation and seismic anisotropy of the lithospheric mantle in the southeastern Carpathians inferred from the study of mantle xenoliths[J]. Earth and Planetary Science Letters, 272(1):50-64. Fernández-Roig M, Galán G, Mariani E. 2017. Deformation and seismic anisotropy of the subcontinental lithospheric mantle in NE Spain:EBSD data on xenoliths from the Catalan Volcanic Zone[J]. Tectonophysics, 698:16-37. Flesch L M, Holt W E, Silver P G. et al. 2005. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data[J]. Earth and Planetary Science Letters, 238(1):248-268. Higgie K, Tommasi A. 2012. Feedbacks between deformation and melt distribution in the crust-mantle transition zone of the Oman ophiolite[J]. Earth and Planetary Science Letters, 359-360:61-72. Higgie K, Tommasi A. 2014. Deformation in a partially molten mantle:Constraints from plagioclase lherzolites from Lanzo, western Alps[J]. Tectonophysics, 615-616:167-181. Hirn A, Jiang M, Sapin M, et al. 1995. Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet[J]. Nature, 375(6532):571-574. Holtzman B, Kohlstedt D, Zimmerman M E, et al. 2003. Melt segregation and strain partitioning:Implications for seismic anisotropy and mantle flow[J]. Science, 301(5637):1227-1230. Hu J, Yang H, Xu X, et al. 2012. Lithospheric structure and crust-mantle decoupling in the southeast edge of the Tibetan plateau[J]. Gondwana Research, 22(3-4):1060-1067. Huang W C, Ni J F, Tilmann F, et al. 2000. Seismic polarization anisotropy beneath the central Tibetan plateau[J]. Journal of Geophysical Research:Solid Earth, 105(B12):27979-927989. Huang Z, Wang L, Zhao D, et al. 2011. Seismic anisotropy and mantle dynamics beneath China[J]. Earth and Planetary Science Letters, 306(1):105-117. Huang Z C, Wang L, Xu M J, et al. 2007. Shear wave splitting across the Ailao Shan-Red River fault zone, SW China[J]. GeophysicalResearchLetters, 34(20):L20301. Huang Z C, Wang L S, Xu M J, et al. 2015a. Teleseismic shear-wave splitting in SE Tibetan plateau:Insight into complex crust and upper-mantle deformation[J]. Earth and Planetary Science Letters, 432:354-362. Huang Z C, Wang P, Xu M J, et al. 2015b. Mantle structure and dynamics beneath SE Tibet revealed by new seismic images[J]. Earth and Planetary Science Letters, 411:100-111. Ismaïl W B, Mainprice D. 1998. An olivine fabric database:An overview of upper mantle fabrics and seismic anisotropy[J]. Tectonophysics, 296(1):145-157. Ji S, Shao T, Michibayashi K, et al. 2013. A new calibration of seismic velocities, anisotropy fabrics, and elastic moduli of amphibole-rich rocks[J]. Journal of Geophysical Research:Solid Earth, 118(9):4699-4728. Ji S, Shao T, Michibayashi K, et al. 2015. Magnitude and symmetry of seismic anisotropy in mica-and amphibole-bearing metamorphic rocks and implications for tectonic interpretation of seismic data from the southeast Tibetan plateau[J]. Journal of Geophysical Research:Solid Earth, 120(9):6404-6430. Jin Z M, Green H W, Zhou Y. 1994. Melt topology during dynamic partial melting of mantle peridotite[J]. Nature, 372:164-167. Jung H. 2009. Deformation fabrics of olivine in Val Malenco peridotite found in Italy and implications for the seismic anisotropy in the upper mantle[J]. Lithos, 109(3-4):341-349. Jung H, Karato S. 2001. Water-induced fabric transitions in olivine[J]. Science, 293(5534):1460-1463. Jung H, Katayama I, Jiang Z, et al. 2006. Effect of water and stress on the lattice-preferred orientation of olivine[J]. Tectonophysics, 421(1):1-22. Jung H, Mo W, Choi S. 2009a. Deformation microstructures of olivine in peridotite from Spitsbergen, Svalbard and implications for seismic anisotropy[J]. Journal of Metamorphic Geology, 27(9):707-720. Jung H, Mo W, Green H W. 2009b. Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine[J]. Nature Geoscience, 2(1):73-77. Jung H, Park M, Jung S, et al. 2010. Lattice preferred orientation, water content, and seismic anisotropy of orthopyroxene[J]. Journal of Earth Science, 21(5):555-568. Jung S, Jung H, Austrheim H. 2014. Characterization of olivine fabrics and mylonite in the presence of fluid and implications for seismic anisotropy and shear localization[J]. Earth Planets and Space, 66(1):1-21. Karato S, Jung H, Katayama I, et al. 2008. Geodynamic significance of seismic anisotropy of the upper mantle:New insights from laboratory studies[J]. Annual Review of Earth and Planetary Sciences, 36:59-95. Katayama I, Hirauchi K I, Michibayashi K, et al. 2009. Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge[J]. Nature, 461(7267):1114-1117. Katayama I, Karato S. 2006. Effect of temperature on the B-to C-type olivine fabric transition and implication for flow pattern in subduction zones[J]. Physics of the Earth Planetary Interoirs, 157(1):33-45. Katz R F, Spiegelman M, Holtzman B. 2006. The dynamics of melt and shear localization in partially molten aggregates[J]. Nature, 442(7103):676-679. Kendall J M, Stuart G, Ebinger C, et al. 2005. Magma-assisted rifting in Ethiopia[J]. Nature, 433(7022):146-148. Ko B, Jung H. 2015. Crystal preferred orientation of an amphibole experimentally deformed by simple shear[J]. Nature Communications, 6:6586. Kohlstedt D L, Zimmerman M E. 1996. Rheology of partially molten mantle rocks[J]. Annual Review of Earth and Planetary Sciences, 24(1):41-62. Kong F, Wu J, Liu K H, et al. 2016. Crustal anisotropy and ductile flow beneath the eastern Tibetan plateau and adjacent areas[J]. Earth and Planetary Science Letters, 442:72-79. Lev E, Long M D, van der Hilst R D. 2006. Seismic anisotropy in eastern Tibetan plateau from shear wave splitting reveals changes in lithospheric deformation[J]. Earth and Planetary Science Letters, 251(3):293-304. Lavé J, Avouac J, Lacassin R, et al. 1996. Seismic anisotropy beneath Tibet:Evidence for eastward extrusion of the Tibetan lithosphere?[J]. Earth and Planetary Science Letters, 140(1):83-96. Li C, van der Hilst R D, Meltzer A S, et al. 2008. Subduction of the Indian lithosphere beneath the Tibetan plateau and Burma[J]. Earth and Planetary Science Letters, 274(1-2):157-168. Liu W L, Zhang J F, Barou F. 2018. B-type olivine fabric induced by low temperature dissolution creep during serpentinization and deformation in mantle wedge[J]. Tectonophysics, 722:1-10. Lloyd G E, Butler R W H, Casey M, et al. 2011. Constraints on the seismic properties of the middle and lower continental crust[J]. Geological Society, London, Special Publications, 360(1):7-32. Long M D, Becker T W. 2010. Mantle dynamics and seismic anisotropy[J]. Earth and Planetary Science Letters, 297(3):341-354. Mainprice D, Barruol G, Ismaïl W B. 2000. The seismic anisotropy of the earth's mantle:From single crystal to polycrystal[J]. In:Karato S et al.(eds). Earth's Deep Interior:Mineral Physics and Tomography from the Atomic to the Global Scale, 117:237-264. Mainprice D, Hielscher R, Schaeben H. 2011. Calculating anisotropic physical properties from texture data using the MTEX open-source package[J]. Geological Society, London, Special Publications, 360(1):175-192. Mainprice D, Silver P G. 1993. Interpretation of SKS-waves using samples from the subcontinental lithosphere[J]. Physics of the Earth Planetary Interiors, 78:257-280. Mainprice D, Tommasi A, Couvy H, et al. 2005. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle[J]. Nature, 433(7027):31-733. Morales L F G, Tommasi A. 2011. Composition, textures, seismic and thermal anisotropies of xenoliths from a thin and hot lithospheric mantle(Summit Lake, southern Canadian Cordillera)[J]. Tectonophysics, 507(1):1-15. Nicolas A, Boudier F, Boullier A. 1973. Mechanisms of flow in naturally and experimentally deformed peridotites[J]. American Journal of Science, 273(10):853-876. Nicolas A, Christensen N I. 1987. Formation of Anisotropy in Upper Mantle Peridotites:A Review[M]//Fuchs K, Froidevau C(eds). Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System, Volume 16.Washington, DC:American Geophysical Union:111-123. Ohuchi T, Irifune T. 2013. Development of A-type olivine fabric in water-rich deep upper mantle[J]. Earth and Planetary Science Letters, 362:20-30. Ohuchi T, Kawazoe T, Nishihara Y, et al. 2011. High pressure and temperature fabric transitions in olivine and variations in upper mantle seismic anisotropy[J]. Earth and Planetary Science Letters, 304(1):55-63. Ozacar A A, Zandt G. 2004. Crustal seismic anisotropy in central Tibet:Implications for deformational style and flow in the crust[J]. Geophysical Research Letters, 31(23):L23601. Précigout J, Hirth G. 2014. B-type olivine fabric induced by grain boundary sliding[J]. Earth and Planetary Science Letters, 395:231-240. Puelles P, Ábalos B, Ibarguchi J G, et al. 2016. Petrofabric and seismic properties of Lithospheric mantle xenoliths from the Calatrava volcanic field(Central Spain)[J]. Tectonophysics, 683:200-215. Satsukawa T, Michibayashi K, Anthony E Y, et al. 2011. Seismic anisotropy of the uppermost mantle beneath the Rio Grande rift:Evidence from Kilbourne Hole peridotite xenoliths, New Mexico[J]. Earth and Planetary Science Letters, 311(1):172-181. Shao T B. 2015. Fabric and elastic properties of antigorite, mica and amphibole-rich rocks and implications for the tectonic interpretation of seismic anisotropy[D]. Ecole Polytechnique, Montreal(Canada):246. Shao T B, Ji S C, Oya S, et al. 2016. Mica-dominated seismic properties of mid-crust beneath west Yunnan(China)and geodynamic implications[J]. Tectonophysics, 677-678:324-338. Sherrington H F, Zandt G, Frederiksen A. 2004. Crustal fabric in the Tibetan plateau based on waveform inversions for seismic anisotropy parameters[J]. Journal of Geophysical Research:Solid Earth, 109(B2):B02312. Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation[J]. Journal of Geophysical Research:Solid Earth, 96(B10):16429-16454. Skemer P, Katayama I, Jiang Z, et al. 2005. The misorientation index:Development of a new method for calculating the strength of lattice-preferred orientation[J]. Tectonophysics, 411(1-4):157-167. Sol S, Meltzer A, Bürgmann R, et al. 2007. Geodynamics of the southeastern Tibetan plateau from seismic anisotropy and geodesy[J]. Geology, 35(6):563-566. Soustelle V, Tommasi A, Bodinier J, et al. 2009. Deformation and reactive melt transport in the mantle lithosphere above a large-scale partial melting domain:The Ronda Peridotite Massif, southern Spain[J]. Journal of Petrology, 50(7):1235-1266. Soustelle V, Tommasi A, Demouchy S, et al. 2010. Deformation and fluid-rock interaction in the supra-subduction mantle:Microstructures and water contents in peridotite xenoliths from the Avacha Volcano, Kamchatka[J]. Journal of Petrology, 51(1-2):363-394. Sun Y, Niu F, Liu H, et al. 2012. Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data[J]. Earth and Planetary Science Letters, 349-350:186-197. Tatham D, Lloyd G, Butler R, et al. 2008. Amphibole and lower crustal seismic properties[J]. Earth and Planetary Science Letters, 267(1):118-128. Tommasi A. 1998. Forward modeling of the development of seismic anisotropy in the upper mantle[J]. Earth and Planetary Science Letters, 160(1):1-13. Tommasi A, Baptiste V, Vauchez A, et al. 2016. Deformation, annealing, reactive melt percolation, and seismic anisotropy in the lithospheric mantle beneath the southeastern Ethiopian rift:Constraints from mantle xenoliths from Mega[J]. Tectonophysics, 682:186-205. Tommasi A, Mainprice D, Canova G, et al. 2000. Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations:Implications for the upper mantle seismic anisotropy[J]. Journal of Geophysical Research:Solid Earth, 105(B4):7893-7908. Tommasi A, Tikoff B, Vauchez A. 1999. Upper mantle tectonics:Three-dimensional deformation, olivine crystallographic fabrics and seismic properties[J]. Earth and Planetary Science Letters, 168(1):173-186. Tommasi A, Vauchez A, Ionov D A. 2008. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths(Tok Cenozoic volcanic field, SE Siberia)[J]. Earth and Planetary Science Letters, 272(1):65-77. Vauchez A, Tommasi A, Barruol G, et al. 2000. Upper mantle deformation and seismic anisotropy in continental rifts[J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 25(2):111-117. Wang C Y, Flesch L M, Chang L. et al. 2013. Evidence of active mantle flow beneath South China[J]. Geophysical Research Letters, 40(19):5137-5141. Wang C Y, Flesch L M, Silver P G, et al. 2008. Evidence for mechanically coupled lithosphere in central Asia and resulting implications[J]. Geology, 36(5):363-366. Wang L, Blaha S, Pintér Z, et al. 2016. Temperature dependence of[100] (010) and[001] (010)dislocation mobility in natural olivine[J]. Earth and Planetary Science Letters, 441:81-90. Xu Z Q, Wang Q, Ji S C, et al. 2006. Petrofabrics and seismic properties of garnet peridotite from the UHP Sulu terrane(China):Implications for olivine deformation mechanism in a cold and dry subducting continental slab[J]. Tectonophysics, 421(1):111-127. Yang H Y, Peng H C, Hu J F. 2017. The lithospheric structure beneath southeast Tibet revealed by P and S receiver functions[J]. Journal of Asian Earth Sciences, 138:62-71. Yang Y, Zhu L, Su Y, et al. 2015. Crustal anisotropy estimated by splitting of Ps-converted waves on seismogram and an application to SE Tibetan plateau[J]. Journal of Asian Earth Science, 16:16-228. Yao H J, van der Hilst R D, Montagner J P. 2010. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J]. Journal of Geophysical Research:Solid Earth, 115(B12):B12307. Zaffarana C, Tommasi A, Vauchez A, et al. 2014. Microstructures and seismic properties of south Patagonian mantle xenoliths(Gobernador Gregores and Pali Aike)[J]. Tectonophysics, 621:175-197. Zhang J, Green H W, Bozhilov K N. 2006. Rheology of omphacite at high temperature and pressure and significance of its lattice preferred orientations[J]. Earth and Planetary Science Letters, 246(3-4):432-443. Zhao L, Zheng T, Lu G. 2013. Distinct upper mantle deformation of cratons in response to subduction:Constraints from SKS wave splitting measurements in eastern China[J]. Gondwana Research, 23(1):39-53. |
[1] | 方东, 胡敏章, 郝洪涛. 青藏高原东南缘重力场多尺度分析及其构造含义[J]. 地震地质, 2021, 43(5): 1208-1232. |
[2] | 唐茂云, 刘静, 李翠平, 王伟, 张金玉, 许强. 青藏高原东南缘的新生代盆地古高度重建研究与进展[J]. 地震地质, 2021, 43(3): 576-599. |
[3] | 陈兆辉, 孟小红, 张双喜, 刘金钊, 王同庆, 张品, 韦少港. 青藏高原东南缘多尺度重力场变化特征及孕震机理分析[J]. 地震地质, 2019, 41(3): 690-703. |
[4] | 王辉, 曹建玲, 徐化超. 中小地震震源机制解在青藏高原东南缘地区断层稳定性分析中的初步应用[J]. 地震地质, 2019, 41(3): 633-648. |
[5] | 吴贵灵, 祝成宇, 王国灿, 张攀. 青藏高原东南缘地貌边界性质的界定及其对高原东南缘扩展模式的启示[J]. 地震地质, 2019, 41(2): 281-299. |
[6] | 王虎, 冉勇康, 陈立春, 梁明剑, 高帅坡, 李彦宝, 徐良鑫. 安宁河断裂带南段滑动速率估计[J]. 地震地质, 2018, 40(5): 967-979. |
[7] | 李永华, 徐小明, 张恩会, 高家乙. 青藏高原东南缘地壳结构及云南鲁甸、景谷地震深部孕震环境[J]. 地震地质, 2014, 36(4): 1204-1216. |
[8] | 张国苓, 杨晓松, 陈建业, 闫小兵. 中下地壳岩石弹性波各向异性的影响因素[J]. 地震地质, 2010, 32(2): 327-337. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||