毕海芸, 郑文俊, 曾江源, 等. 2017. SfM摄影测量方法在活动构造定量研究中的应用[J]. 地震地质, 39(4):656-674. doi:10.3969/j.issn.0253-4967.2017.04.003. BI Hai-yun, ZHENG Wen-jun, ZENG Jiang-yuan, et al. 2017. Application of SfM photogrammetry method to the quantitative study of active tectonics[J]. Seismology and Geology, 39(4):656-674(in Chinese).
陈涛. 2014. 机载激光雷达技术在构造地貌定量化研究中的应用[D]. 北京:中国地震局地质研究所. CHEN Tao. 2014. Application of airborne LiDAR(light detection and ranging)for quantitative tectonic geomorphology[D]. Institute of Geology, China Earthquake Administration, Beijing(in Chinese).
邓起东, 陈立春, 冉勇康. 2004. 活动构造定量研究与应用[J]. 地学前缘, 11(4):383-392. DENG Qi-dong, CHEN Li-chun, RAN Yong-kang. 2004. Quantitative studies and applications of active tectonics[J]. Earth Science Frontiers, 11(4):383-392(in Chinese).
高帅坡, 冉勇康, 吴富峣, 等. 2017. 利用无人机摄影测量技术提取复杂冲积扇面构造活动信息——以新疆巴里坤盆地南缘冲积扇面为例[J]. 地震地质, 39(4):793-804. doi:10.3969/j.issn.0253-4967.2017.04.013. GAO Shuai-po, RAN Yong-kang, WU Fu-yao, et al. 2017. Using UAV photogrammetry technology to extract information of tectonic activity of complex alluvial fan:A case study of an alluvial fan in the southern margin of Barkol Basin[J]. Seismology and Geology, 39(4):793-804(in Chinese).
刘静, 陈涛, 张培震, 等. 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报, 58(1):41-45. LIU Jing, CHEN Tao, ZHANG Pei-zhen, et al. 2013. Illuminating the active Haiyuan Fault, China by airborne light detection and ranging[J]. Chinese Science Bulletin, 58(1):41-45(in Chinese).
王朋涛, 邵延秀, 张会平, 等. 2016. sUAV摄影技术在活动构造研究中的应用:以海原断裂骟马沟为例[J]. 第四纪研究, 36(2):433-442. WANG Peng-tao, SHAO Yan-xiu, ZHANG Hui-ping, et al. 2016. The application of sUAV photogrammetry in active tectonics:Shanmagou site of Haiyuan Fault, for example[J]. Quaternary Sciences, 36(2):433-442(in Chinese).
魏占玉, Arrowsmith R, 何宏林, 等. 2015. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质, 37(2):636-648. doi:10.3969/j.issn.0253-4967.2015.02.024. WEI Zhan-yu, Arrowsmith R, HE Hong-lin, et al. 2015. Accuracy analysis of terrain point cloud acquired by "Struction from Motion" using aerial photos[J]. Seismology and Geology, 37(2):636-648(in Chinese).
杨海波, 杨晓平, 黄雄南, 等. 2016. 移动摄影测量数据与差分GPS数据的对比分析:以祁连山北麓洪水坝河东岸断层陡坎为例[J]. 地震地质, 38(4):1030-1046. doi:10.3969/j.issn.0253-4967.2016.04.018. YANG Hai-bo, YANG Xiao-ping, HUANG Xiong-nan, et al. 2016. Data comparative analysis between SfM data and DGPS data:A case study from fault scarp in the east bank of Hongshuiba River, northern margin of the Qilian Shan[J]. Seismology and Geology, 38(4):1030-1046(in Chinese).
俞晶星. 2013. 雅布赖山前断裂晚第四纪滑动速率与古地震[D]. 北京:中国地震局地质研究所. YU Jing-xing. 2013. Late Quaternary slip rates and paleoearthquakes along the Yabrai range-front fault in the southern Gobi-Alashan block[D]. Institute of Geology, China Earthquake Administration, Beijing(in Chinese).
袁道阳. 2003. 青藏高原东北缘晚新生代以来的构造变形特征与时空演化[D]. 北京:中国地震局地质研究所. YUAN Dao-yang. 2003. Tectonic deformation features and space-time evolution in northeastern margin of the Qinghai-Tibetan plateau since the Late Cenozoic time[D]. Institute of Geology, China Earthquake Administration, Beijing(in Chinese).
袁道阳, 张培震, 刘百篪, 等. 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 78(2):270-278. YUAN Dao-yang, ZHANG Pei-zhen, LIU Bai-chi, et al. 2004. Geometrical imagery and tectonic transformation of late Quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica, 78(2):270-278(in Chinese).
张会平, 刘少峰. 2004. 利用DEM进行地形高程剖面分析的新方法[J]. 地学前缘, 11(3):226. ZHANG Hui-ping, LIU Shao-feng. 2004. A new method of topographic elevation profile analysis using DEM[J]. Earth Science Frontiers, 11(3):226(in Chinese).
张会平, 刘少峰, 孙亚平, 等. 2006. 基于SRTM-DEM区域地形起伏的获取及应用[J]. 国土资源遥感, 67(1):31-35. ZHANG Hui-ping, LIU Shao-feng, SUN Ya-ping, et al. 2006. The acquisition of local topographic relief and its application:An SRTM-DEM analysis[J]. Remote Sensing for Land & Resources, 67(1):31-35(in Chinese).
张宁. 2016. 阿尔金断裂东端部的几何结构与运动特征[D]. 北京:中国地震局地质研究所. ZHANG Ning. 2016. Geometry and kinematics of the eastern end of the Altyn Tagh Fault[D]. Institute of Geology, China Earthquake Administration, Beijing(in Chinese).
张启胜, 张敏. 1996. 青海南山断裂茶卡北山-大水桥形变带地震地质特征[J]. 高原地震, 8(2):68-72. ZHANG Qi-sheng, ZHANG Min. 1996. The seismogeological characteristics of the Chakabeishan-Dashuiqiao seismic deformation zone of Qinghai Nanshan[J]. Plateau Earthquake Research, 8(2):68-72(in Chinese).
赵尚民, 程维明, 周成虎, 等. 2009. 青藏高原北缘公格尔山地区地形梯度的剖析[J]. 地球信息科学学报, 11(6):753-758. ZHAO Shang-min, CHENG Wei-ming, ZHOU Cheng-hu, et al. 2009. Analysis on the topographic gradient and geographical meaning of Mt. Konggur, in the northern edge of Qinghai-Tibet plateau[J]. Journal of Geo-Information Science, 11(6):753-758(in Chinese).
邹斌文, 马维峰, 龙昱, 等. 2011. 基于ArcGIS的条带剖面提取方法在地貌分析中的应用[J]. 地理与地理信息科学, 27(3):42-44. ZOU Bin-wen, MA Wei-feng, LONG Yu, et al. 2011. Extraction method of swath profile based on ArcGIS and its application in landform analysis[J]. Geography and Geo-Information, 27(3):42-44(in Chinese).
Arrowsmith J R, Zielke O, Tarolli P, et al. 2009. Tectonic geomorphology of the San Andreas fault zone from high resolution topography:An example from the Cholame segment[J]. Geomorphology, 113(1-2):70-81.
Bemis S P, Micklethwaite S, Turner D, et al. 2014. Ground-based and UAV-based photogrammetry:A multi-scale, high-resolution mapping tool for structural geology and paleoseismology[J]. Journal of Structural Geology, 69(A):163-178.
Bi H Y, Zheng W J, Ren Z K, et al. 2017. Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry[J]. International Journal of Remote Sensing, 38(8-10):2495-2510.
Cunningham D, Grebby S, Tansey K, et al. 2006. Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia[J]. Geophysical Research Letters, 33(20):382-385.
Fonstad M A, Dietrich J T, Courville B C, et al. 2013. Topographic structure from motion:A new development in photogrammetric measurement[J]. Earth Surface Processes & Landforms, 38(4):421-430.
Harwin S, Lucieer A. 2012. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle(UAV)imagery[J]. Remote Sensing, 4(6):1573-1599.
James M R, Robson S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera:Accuracy and geoscience application[J]. Journal of Geophysical Research Atmospheres, 117(F3):F03017.
Javernick L, Brasington J, Caruso B. 2014. Modeling the topography of shallow braided rivers using structure-from-motion photogrammetry[J]. Geomorphology, 213(4):166-182.
Johnson K, Nissen E, Saripalli S, et al. 2014. Rapid mapping of ultrafine fault zone topography with structure from motion[J]. Geosphere, 10(10):969-986.
Lin Z, Kaneda H, Mukoyama S, et al. 2013. Detection of subtle tectonic-geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey[J]. Geomorphology, 182(2):104-115.
Lowe D G. 2004. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 60(2):91-110.
Lucieer A, Jong S M D, Turner D. 2014. Mapping landslide displacements using structure from motion(SfM)and image correlation of multi-temporal UAV photography[J]. Progress in Physical Geography, 38(1):97-116.
Mancini F, Dubbini M, Gattelli M, et al. 2013. Using unmanned aerial vehicles(UAV)for high-resolution reconstruction of topography:The structure from motion approach on coastal environments[J]. Remote Sensing, 5(12):6880-6898.
Micheletti N, Chandler J H, Lane S N. 2015. Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone[J]. Earth Surface Processes & Landforms, 40(4):473-486.
Moreels P, Perona P. 2007. Evaluation of features detectors and descriptors based on 3D objects[J]. International Journal of Computer Vision, 73(3):263-284.
Snavely N, Seitz S M, Szeliski R. 2008. Modeling the world from internet photo collections[J]. International Journal of Computer Vision, 80(2):189-210.
Turner D, Lucieer A, Watson C. 2012. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle(UAV)imagery, based on structure from motion(SfM)point clouds[J]. Remote Sensing, 4(5):1392-1410.
Westoby M J, Brasington J, Glasser N F, et al. 2012. ‘Structure-from-motion’ photogrammetry:A low-cost, effective tool for geoscience applications[J]. Geomorphology, 179:300-314.
Whitehead K, Moorman B J, Hugenholtz C H. 2013. Brief communication:Low-cost, on-demand aerial photo-grammetry for glaciological measurement[J]. Cryosphere, 7(6):1879-1884.
Woerd J V D. 1998. Couplage cinématique entre décrochements et chevauchements actifs dans le Nord du Tibet(Kinematic coupling between active strike-slip and thrust faults in northeast Tibet. Growth of the Tibet Plateau)[D]. Paris:l'Université Paris.
Yuan D Y, Champagnac J D, Ge W P, et al. 2011. Late Quaternary right-lateral slip rates of faults adjacent to the Lake Qinghai, northeastern margin of the Tibetan plateau[J]. Geological Society of America Bulletin, 123(9-10):2016-2030.
Zielke O, Arrowsmith J R, Grant Ludwig L, et al. 2012. High-resolution topography-derived offsets along the 1857 Fort Tejon earthquake rupture trace, San Andreas Fault[J]. Bulletin of the Seismological Society of America, 102(3):1135-1154.
Zielke O, Arrowsmith J R, Ludwig L G, et al. 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault[J]. Science, 327(5969):1119-1122. |