甘平, 董燕生, 孙林, 等. 2017. 基于无人机载LiDAR数据的玉米涝灾灾情评估[J]. 中国农业科学, 50(15):2983-2992.GAN Ping, DONG Yan-sheng, SUN Lin, et al. 2017. Evaluation of maize waterlogging disaster using UAV LiDAR Data[J]. Scientia Agricultura Sinica, 50(15):2983-2992(in Chinese).
黄小燕, 李耀辉, 冯建英, 等. 2015. 中国西北地区降水量及极端干旱气候变化特征[J]. 生态学报, 35(5):1359-1370.HUANG Xiao-yan, LI Yao-hui, FENG Jian-ying, et al. 2015. Climate characteristics of precipitation and extreme drought events in Northwest China[J]. Acta Ecologica Sinica, 35(5):1359-1370(in Chinese).
李传友, 张培震, 袁道阳, 等. 2006. 西秦岭北缘断裂带黄香沟段晚第四纪水平位移特征及其微地貌响应[J]. 地震地质, 28(3):391-404.LI Chuan-you, ZHANG Pei-zhen, YUAN Dao-yang, et al. 2006. Late-Quaternary horizontal displacement and its associated microgeomorphology of the Western Qinling fault zone at Huangxianggou[J]. Seismology and Geology, 28(3):391-404(in Chinese).
李传友, 张培震, 张建玺, 等. 2007. 西秦岭北缘断裂带黄香沟段晚第四纪活动表现与滑动速率[J]. 第四纪研究, 27(1):54-63.LI Chuan-you, ZHANG Pei-zhen, ZHANG Jian-xi, et al. 2007. Late-Quaternary activity and slip rate of the Western Qinling fault zone at Huangxianggou[J]. Quaternary Science, 27(1):54-63(in Chinese).
刘静, 陈涛, 张培震, 等. 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报, 58(1):41-45.LIU Jing, CHEN Tao, ZHANG Pei-zhen, et al. 2013. Illuminating the active Haiyuan Fault, China by Airborne Light Detection and Ranging[J]. Chinese Science Bulletin, 58(1):41-45(in Chinese).
邵延秀, 袁道阳, 王爱国, 等. 2011. 西秦岭北缘断裂破裂分段与地震危险性评估[J]. 地震地质, 33(1):79-90. doi:10.3969/j.issn.0253-4967.2011.01.008.
SHAO Yan-xiu, YUAN Dao-yang, WANG Ai-guo, et al. 2011. The segmentation of rupture and estimate of earthquake risk along the north margin of western Qinling fault zone[J]. Seismology and Geology, 33(1):79-90(in Chinese).
滕瑞增, 金瑶泉, 李西候, 等. 1994. 西秦岭北缘断裂带新活动特征[J]. 西北地震学报, 16(2):85-90.TENG Rui-zeng, JIN Yao-quan, LI Xi-hou, et al. 1994. Recent activity characteristics of the fault zone at northern edge of Western Qinling mt[J]. Northwestern Seismological Journal, 16(2):85-90(in Chinese).
王兰民, 吴志坚. 2013. 岷县漳县6.6级地震震害特征及其启示[J]. 地震工程学报, 35(3):401-412.WANG Lan-min, WU Zhi-jian. 2013. Earthquake Damage Characteristics of the Minxian-Zhangxian MS6.6 Earthquake and Its Lessons[J]. China Earthquake Engineering Journal, 35(3):401-412(in Chinese).
王朋涛, 邵延秀, 张会平, 等. 2016. sUAV摄影技术在活动构造研究中的应用:以海原断裂骟马沟为例[J]. 第四纪研究, 36(2):433-442.WANG Peng-tao, SHAO Yan-xiu, ZHANG Hui-ping, et al. 2016. The application of suav photogrammetry in active tectonics:Shanmagou site of Haiyuan Fault, for example[J]. Quaternary Sciences, 36(2):433-442(in Chinese).
魏占玉, 何宏林, 高伟, 等. 2014. 基于LiDAR数据开展活动断层填图的实验研究:以新疆独山子背斜-逆冲断裂带为例[J]. 地震地质, 36(3):794-813. doi:10.3969/j.issn.0253-4967.2014.03.019.WEI Zhan-yu, HE Hong-lin, GAO Wei, et al. 2014. Experimental study on geologic mapping of active tectonics based on LiDAR data-a case of Dushanzi anticline-reverse fault zone in Xinjiang[J]. Seismology and Geology, 36(3):794-813(in Chinese).
吴赵, 袁道阳, 王爱国, 等. 2016. 西秦岭北缘断裂带武山-天水段全新世活动的新证据[J]. 地震工程学报, 38(2):249-259.WU Zhao, YUAN Dao-yang, WANG Ai-guo, et al. 2016. New evidence for holocene tectonic activities of the Wushan-Tianshui segment in the northern margin fault of the west Qinling[J]. China Earthquake Engineering Journal, 38(2):249-259(in Chinese).
袁道阳, 杨明. 1999. 西秦岭北缘断裂带的位移累积滑动亏损特征及其破裂分段性研究[J]. 地震研究, 22(4):382-389.YUAN Dao-yang, YANG Ming. 1999. Research on the features of displacement cumulative slip deficits and segmentation in the northern margin fault zone of the Western Qinling[J]. Journal of Seismological Research, 22(4):382-389(in Chinese).
张波, 何文贵, 袁道阳, 等. 2012. 西秦岭北缘断裂带西端晚第四纪活动特征及其西延问题[J]. 地震, 32(1):136-143.ZHANG Bo, HE Wen-gui, YUAN Dao-yang, et al. 2012. Late quaternary activities of the west segment of Northern Margin of Western Qinling fault zone and its Western Extension[J]. Earthquake, 32(1):136-143(in Chinese).
Arrowsmith J R, Zielke O. 2009. Tectonic geomorphology of the San Andreas fault zone from high resolution topography:An example from the Cholame Segment[J]. Geomorphology, 113(1/2):70-81.
Bemis S P, Micklethwaite S, Turner D, et al. 2014. Ground-based and UAV-based photogrammetry:A multi-scale, high-resolution mapping tool for structural geology and paleoseismology[J]. Journal of Structural Geology, 69:163-178.
Chen T, Akciz S O, Hudnut K W, et al. 2015. Fault-Slip Distribution of the 1999 MW7. 1 Hector Mine Earthquake, California, Estimated from Postearthquake Airborne LiDAR Data[J]. Bulletin of the Seismological Society of America, 105(2A):776-790.
Chen T, Zhang P Z, Liu J, et al. 2014. Quantitative study of tectonic geomorphology along Haiyuan fault based on airborne LiDAR[J]. Chinese Science Bulletin, 59(20):2396-2409.
Cowgill E, Bernardin T S, Oskin M E, et al. 2012. Interactive terrain visualization enables virtual field work during rapid scientific response to the 2010 Haiti earthquake[J]. Geosphere, 8(4):787-804.
Hudnut K W, Borsa A, Glennie C, et al. 2002. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California, earthquake(MW7.1)from airborne laser swath mapping[J]. Bulletin of the Seismological Society of America, 92(4):1570-1576.
Hurst M D, Mudd S M, Attal M, et al. 2013. Hillslopes record the growth and decay of landscapes[J]. Science, 341(6148):868-871.
Jaboyedoff M, Oppikofer T, Abellán A, et al. 2012. Use of LIDAR in landslide investigations:A review[J]. Natural hazards, 61(1):5-28.
Kondo H, Toda S, Okumura K, et al. 2008. A fault scarp in an urban area identified by LiDAR survey:A Case study on the Itoigawa-Shizuoka Tectonic Line, central Japan[J]. Geomorphology, 101(4):731-739.
Lin Y, Hyyppa J, Jaakkola A. 2011. Mini-UAV-borne LIDAR for fine-scale mapping. IEEE Geoscience and Remote Sensing Letters, 8(3):426-430.
Lucieer A, De Jong S M, Turner D. 2014. Mapping landslide displacements using Structure from Motion(SfM)and image correlation of multi-temporal UAV photography[J]. Progress in Physical Geography, 38(1):97-116.
Oskin M E, Le K, Strane M D. 2007. Quantifying Fault-zone activity in arid environments with high-resolution topography[J]. Geophysical Research Letters, 34(23):L23S05.
Oskin M E, Arrowsmith J R, Corona A H, et al. 2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LIDAR[J]. Science, 335(6069):702-705.
Reitman N G, Bennett S E K, Gold R D, et al. 2015. High-resolution trench photomosaics from image-based modeling:Workflow and error analysis[J]. Bulletin of the Seismological Society of America, 105(5):2354-2366.
Salisbury J B, Haddad D E, Rockwell T, et al. 2015. Validation of meter-scale surface faulting offset measurements from high-resolution topographic data[J]. Geosphere, 11(6):1-18.
Stumpf A, Malet J P, Allemand P, et al. 2015. Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion[J]. Geomorphology, 231:130-145.
Thackray G D, Rodgers D W, Streutker D. 2013. Holocene scarp on the Sawtooth fault, central Idaho, USA, documented through lidar topographic analysis[J]. Geology, 41(6):639-642.
Tseng C M, Lin C W, Stark C P, et al. 2013. Application of a multi-temporal, LiDAR-derived, digital terrain model in a landslide-volume estimation[J]. Earth Surface Processes and Landforms, 38(13):1587-1601.
Turner D, Lucieer A, De Jong S M. 2015. Time series analysis of landslide dynamics using an unmanned aerial vehicle(UAV)[J]. Remote Sensing, 7(2):1736-1757.
Wallace L, Lucieer A, Watson C, et al. 2012. Development of a UAV-LiDAR system with application to forest inventory[J]. Remote Sensing, 4(6):1519-1543.
Zielke O, Arrowsmith J R, Grant Ludwig L, et al. 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault[J]. Science 327(5669):1119-1122. |