[1] |
陈槚俊, 何登发, 孙方源, 等. 2018. 温宿凸起构造几何学与运动学特征[J]. 新疆石油地质, 39(3): 318—325.
|
|
CHEN Jia-jun, HE Deng-fa, SUN Fang-yuan, et al. 2018. Geometry and kinematics of Wensu Swell in north Tarim uplift[J]. Xinjiang Petroleum Geology, 39(3): 318—325 (in Chinese).
|
[2] |
何登发, 孙方原, 何金有, 等. 2011. 温宿北-野云沟断裂的构造几何学与运动学特征及塔北隆起的成因机制[J]. 中国地质, 38(4): 917—934.
|
|
HE Deng-fa, SUN Fang-yuan, HE Jin-you, et al. 2011. Geometry and kinematics of Wensubei-Yeyungou Fault and its implication for the genetic mechanism of North Tarim uplift[J]. Geology in China, 38(4): 917—934 (in Chinese).
|
[3] |
贾进华, 周东延, 张立平, 等. 2004. 塔里木盆地乌什凹陷石油地质特征[J]. 石油学报, 25(6): 12—17.
DOI
|
|
JIA Jin-hua, ZHOU Dong-yan, ZHANG Li-ping, et al. 2004. Petroleum geologic characteristics of Wushi Sag in Tarim Basin[J]. Acta Petrolei Sinica, 25(6): 12—17 (in Chinese).
DOI
|
[4] |
房立华, 吴建平, 王未来, 等. 2015. 2014年新疆于田 MS7.3 地震序列重定位[J]. 地球物理学报, 58(3): 802—808.
DOI
|
|
FANG Li-hua, WU Jian-ping, WANG Wei-lai, et al. 2015. Relocation of the 2014 MS7.3 earthquake sequence in Yutian, Xinjiang[J]. Chinese Journal of Geophysics, 58(3): 802—808 (in Chinese).
|
[5] |
新疆维吾尔自治区地质矿产局. 1982. 中国新疆维吾尔自治区1︰20万地质图[M]. 北京: 地质出版社.
|
|
Xinjiang Uygur Autonomous Region Geological and Mineral Bureau. 1982. Geological map of Xinjiang Uygur Autonomous Region, China at 1︰200 000 Scale[M]. Geological Publishing House, Beijing (in Chinese).
|
[6] |
杨有星, 张君峰, 高永进, 等. 2020. 新疆塔里木盆地温宿凸起新温地1井、 2井获高产工业油流[J]. 中国地质, 47(1): 251—252.
|
|
YANG You-xing, ZHANG Jun-feng, GAO Yong-jin, et al. 2020. High industrial oil flow obtained from Well XWD1 and XWD1 in the Wensu uplift of the Tarim Basin[J]. Geology in China, 47(1): 251—252 (in Chinese).
|
[7] |
郑民, 雷刚林, 黄少英, 等. 2007. 南天山西段南缘断裂构造特征及对乌什凹陷发育的控制[J]. 地质科学, 42(4): 639—655.
|
|
ZHENG Min, LEI Gang-lin, HUANG Shao-ying, et al. 2007. Features of fault structure in southern margin of west segment of the south Tianshan, and its control to evolution of the Wushi Sag[J]. Chinese Journal of Geology, 42(4): 639—655 (in Chinese).
|
[8] |
郑民, 彭更新, 雷刚林, 等. 2008. 库车坳陷乌什凹陷构造样式及对油气的控制[J]. 石油勘探与开发, 35(4): 444—451.
|
|
ZHENG Min, PENG Geng-xin, LEI Gang-lin, et al. 2008. Structural pattern and its control on hydrocarbon accumulations in Wushi Sag, Kuche Depression, Tarim Basin[J]. Petroleum Exploration and Development, 35(4): 444—451 (in Chinese).
DOI
URL
|
[9] |
Bronnikov M M. 1908. Karatag earthquake[J]. Bulletin of the Geology Committee, 27(147): 475—515.
|
[10] |
Cooper M. 1992. The analysis of fracture systems in subsurface thrust structures from the Foothills of the Canadian Rockies[A] //McClay K R(Ed). Thrust Tectonics. Springer, Dordrecht: 391—405.
|
[11] |
Ghose S, Mellors R J, Korjenkov A M, et al. 1997. The MS=7.3 1992 Suusamyr, Kyrgyzstan, earthquake in the Tien Shan: 2. Aftershock focal mechanisms and surface deformation[J]. Bulletin of the Seismological Society of America, 87(1): 23—38. doi: 10.1785/BSSA0870010023.
|
[12] |
Kalmetieva Z A, Mikolaichuk A V, Moldobekov B D, et al. 2009. Atlas of Earthquakes in Kyrgyzstan[M]. Central-Asian Institute for Applied Geosciences and United Nations International Strategy for Disaster Reduction Secretariat Office in Central Asia, Bishkek.
|
[13] |
Kondorskaya N V, Shebalin N V. 1982. New Catalog of Strong Earthquakes in the USSR from Ancient Times through 1977[M]. World Data Center A for Solid Earth Geophysics, Boulder, Colorado, USA: 608.
|
[14] |
Li T, Chen J, Thompson J J, et al. 2018. Active bending-moment faulting: Geomorphic expression, controlling conditions, accommodation of fold deformation[J]. Tectonics, 37(8): 2278—2306.
DOI
URL
|
[15] |
Mellors R J, Vernon F L, Pavlis G L, et al. 1997. The MS=7.3 1992 Suusamyr, Kyrgyzstan earthquake: 1. Constraints on fault geometry and source parameters based on aftershocks and body wave modeling[J]. Bulletin of the Seismological Society of America, 87(1): 11—22. doi: 10.1785/BSSA0870010011.
|
[16] |
Molnar P, Deng Q. 1984. Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia[J]. Journal of Geophysical Research-Atmospheres, 89(NB7): 6203—6227. doi: 10.1029/JB089iB07p06203.
|
[17] |
Molnar P, Ghose S. 2000. Seismic moments of major earthquakes and the rate of shortening across the Tien Shan[J]. Geophysical Research Letters, 27(16): 2377—2380. doi: 10.1029/2000GL011637.
|
[18] |
Nelson M R, McCaffrey R, Molnar R. 1987. Source parameters for 11 earthquakes in the Tien Shan, Central Asia, determined by P and SH waveform inversion[J]. Journal of Geophysical Research, 92: 12629—12648. doi: 10.1029/JB092iB12p12629.
|
[19] |
Rolland Y, Jourdon A, Petit C, et al. 2020. Thermochronology of the highest central Asian massifs(Khan Tengri-Pobedi, SE Kyrgyztan): Evidence for Late Miocene(ca.8Ma) reactivation of Permian faults and insights into building the Tian Shan[J]. Journal of Asian Earth Sciences, 200: 104466. doi: 10.1016/J.JSEAES.2020.104466.
|
[20] |
Tavani S, Berta López-Mir B, Muoz J A. 2015. Extensional fold-related fracturing in the Armeña rollover(Cotiella Massif, Southern Pyrenees)[J]. Italian Journal of Geosciences, 134(3): 458—473. doi: 10.3301/IJG.2014.17.
|
[21] |
Thompson S C, Weldon R J, Rubin C M, et al. 2002. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, Central Asia[J]. Journal of Geophysical Research, 107(B9): 2203. doi: 10.1029/2001JB000596.
|
[22] |
Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward Fault, California[J]. Bulletin of the Seismological Society of America, 90(6): 1353—1368.
DOI
URL
|
[23] |
Wu C Y, Zheng W J, Zhang P Z, et al. 2019. Oblique thrust of the Maidan Fault and late Quaternary tectonic deformation in the southwestern Tian Shan, northwestern China[J]. Tectonics, 38(8): 2625—2645. doi: 10.1029/2018TC005248.
|