[1] |
王永吉, 吕厚远. 1993. 植物硅酸体研究及应用[M]. 北京: 海洋出版社.
|
|
WANG Yong-ji, LÜ Hou-yuan. 1993. Phytolith Study and Its Application[M]. China Ocean Press, Beijing (in Chinese).
|
[2] |
张新荣, 胡克, 王东坡, 等. 2004. 植硅体研究及其应用的讨论[J]. 世界地质, 23(2): 112—117.
|
|
ZHANG Xin-rong, HU Ke, WANG Dong-po, et al. 2004. Discussion on research and application of phytolith[J]. Global Geology, 23(2): 112—117 (in Chinese).
|
[3] |
张雨欣, 左昕昕. 2023. 植硅体碳与陆地生态系统碳循环: 机遇和挑战[J]. 地球科学进展, 38(2): 212—220.
DOI
|
|
ZHANG Yu-xin, ZUO Xin-xin. 2023. Phytolith-occluded carbon and terrestrial ecosystem carbon cycle: opportunities and challenges[J]. Advances in Earth Science, 38(2): 212—220 (in Chinese).
DOI
|
[4] |
左昕昕, 吴乃琴. 2019. 植硅体14C测年研究: 过去、 现在与未来[J]. 第四纪研究, 39(1): 59—66.
|
|
ZUO Xin-xin, WU Nai-qin. 2019. Phytolith radiocarbon dating: Past, present and future[J]. Quaternary Sciences, 39(1): 59—66 (in Chinese).
|
[5] |
Aitken M J. 1985. Thermoluminescence Dating[M]. Clarendon Press, London.
|
[6] |
Aitken M J. 1998. Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-stimulated Luminescence[M]. Clarendon Press, London.
|
[7] |
Alexandre A, Meunier J D, Lézine A M, et al. 1997. Phytoliths: Indicators of grassland dynamics during the late Holocene in intertropical Africa[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 136(1-4): 213—229. https://doi.org/ 10.1016/S0031-0182(97)00089-8.
|
[8] |
Barboni D, Bonnefille R, Alexandre A, et al. 1999. Phytoliths as palaeoenvironmental indicators, West Side Middle Awash Valley, Ethiopia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1-2): 87—100. https://doi.org/ 10.1016/S0031-0182(99)00045-0.
|
[9] |
Deer W A, Howie R A, Zussman J. 1992. An Introduction to the Rock-forming Minerals(2nd Edition)[M]. Longman Scientific and Technical, London.
|
[10] |
Jain M, Duller G A T, Wintle A G. 2007. Dose response, thermal stability and optical bleaching of the 310℃ isothermal TL signal in quartz[J]. Radiation Measurements, 42(8): 1285—1293. https://doi.org/ 10.1016/j.radmeas.2007.08.008.
|
[11] |
Jenkins E. 2009. Phytolith taphonomy: A comparison of dry ashing and acid extraction on the breakdown of conjoined phytoliths formed in Triticum durum[J]. Journal of Archaeological Science, 36(10): 2402—2407. https://doi.org/ 10.1016/j.jas.2009.06.028.
|
[12] |
Li Z, Song Z, Cornelis J-T. 2014. Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon[J]. Frontiers in Plant Science, 5:1—8. https://doi.org/ 10.3389/fpls.2014.00529.
|
[13] |
Mann S, Perry C C. 1986. Structural aspects of biogenic silica[J]. Ciba Foundation Symposium, 121:10—58. https://doi.org/10.1002/9780470513323.ch4.
|
[14] |
Murray A S, Wintle A G. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 32(1): 57—73. https://doi.org/ 10.1016/S1350-4487(99)00253-X.
|
[15] |
Murray A S, Wintle A G. 2003. The single aliquot regenerative dose protocol: Potential for improvements in reliability[J]. Radiation Measurements, 37(4-5): 377—381. https://doi.org/ 10.1016/S1350-4487(03)00053-2.
|
[16] |
Parr J F, Lentfer C J, Boyd W E. 2001. A comparative analysis of wet and dry ashing techniques for the extraction of phytoliths from plant material[J]. Journal of Archaeological Science, 28(8): 875—886. https://doi.org/ 10.1006/jasc.2000.0623.
|
[17] |
Parr J F, Sullivan L A. 2005. Soil carbon sequestration in phytoliths[J]. Soil Biology and Biochemistry, 37(1): 117—124. https://doi.org/ 10.1016/j.soilbio.2004.06.013.
|
[18] |
Reyerson P E, Alexandre A, Harutyunyan A, et al. 2016. Unambiguous evidence of old soil carbon in grass biosilica particles[J]. Biogeosciences, 13(4): 1269—1286. https://doi.org/ 10.5194/bg-13-1269-2016.
|
[19] |
Rovner I. 1971. Potential of opal phylitothys for use in paleoecological reconstruction[J]. Quaternary Research, 1(3): 256—261. https://doi.org/ 10.1016/0033-5894(71)90070-6.
|
[20] |
Vandenberghe D A G, Jain M, Murray A S. 2009. Equivalent dose determination using a quartz isothermal TL signal[J]. Radiation Measurements, 44(5-6): 439—444. https://doi.org/ 10.1016/j.radmeas.2009.03.006.
|
[21] |
Wintle A G, Adamiec G. 2017. Optically stimulated luminescence signals from quartz: A review[J]. Radiation Measurements, 98:10—33. https://doi.org/ 10.1016/j.radmeas.2017.02.003.
|
[22] |
Yin J H, Yang X, Zheng Y G. 2014. Influence of increasing combustion temperature on the AMS 14C dating of modern crop phytoliths[J]. Scientific Reports, 4: 6511. http://doi.org/ 10.1038/srep06511.
|
[23] |
Zuo X X, Lü H Y, Huan X J, et al. 2019. Influence of different extraction methods on prehistoric phytolith radiocarbon dating[J]. Quaternary International, 528: 4—8. http://doi.org/ 10.1016/j.quaint.2018.12.002
|