[1] |
艾晶, 刘崇峻, 吴桂叶, 等. 2019. 阴阳离子捕收剂在长石浮选分离中的研究进展[J]. 中国矿业, 28(S2)314—316, 321.
|
|
AI Jing, LIU Chong-jun, WU Gui-ye, et al. 2019. Research progress of mixed anion-cation collectors in feldspar flotation separation[J]. China Mining Magazine, 28(S2): 314—316, 321 (in Chinese).
|
[2] |
李爱民. 2021. 我国石英与长石浮选分离的研究进展[J]. 矿产保护与利用, 41(6): 27—34.
|
|
LI Ai-min. 2021. Research progress in flotation separation of quartz and feldspar in China[J]. Conservation and Utilization of Mineral Resources, 41(6): 27—34 (in Chinese).
|
[3] |
那春光, 孔屏, 黄费新, 等. 2006. 原地生成宇宙成因核素10Be和26Al样品采集及处理[J]. 岩矿测试, 25(2): 101—106.
|
|
NA Chun-guang, KONG Ping, HUANG Fei-xin, et al. 2006. Field collection and laboratory treatment of samples for analysis of in-situ cosmogenic nuclides 10Be and 26Al[J]. Rock and Mineral Analysis, 25(2): 101—106 (in Chinese).
|
[4] |
孙传尧, 印万忠. 2001. 硅酸盐矿物浮选原理[M]. 北京: 科学出版社.
|
|
SUN Chuan-yao, YIN Wan-zhong. 2001. Flotation Principle of Silicate Minerals[M]. Science Press, Beijing (in Chinese).
|
[5] |
袁兆德, 陈杰, 李文巧, 等. 2012. 帕米尔高原东部塔合曼大型滑坡体的10Be测年[J]. 第四纪研究, 32(3): 409—416.
|
|
YUAN Zhao-de, CHEN Jie, LI Wen-qiao, et al. 2012. 10Be dating of Taheman large scale landslide in eastern Pamir and paleoseismic implications[J]. Quaternary Sciences, 32(3): 409—416 (in Chinese).
|
[6] |
张丽, 周卫健, 常宏, 等. 2012. 暴露测年样品中26Al和10Be分离及其加速器质谱测定[J]. 岩矿测试, 31(1): 83—89.
|
|
ZHANG Li, ZHOU Wei-jian, CHANG Hong, et al. 2012. The extraction of in-situ 10Be and 26Al from rock sample and accelerator mass spectrometric measurements[J]. Rock and Mineral Analysis, 31(1): 83—89 (in Chinese).
|
[7] |
张钊, 冯启明, 王维清, 等. 2013. 阴阳离子捕收剂在长石与石英表面的吸附特性[J]. 中南大学学报(自科学版), 44(4): 1312—1318.
|
|
ZHANG Zhao, FENG Qi-ming, WANG Wei-qing, et al. 2013. Adsorption characteristics of feldspar and quartz in anion-cation collector[J]. Journal of Central South University(Science and Technology), 44(4): 1312—1318 (in Chinese).
|
[8] |
赵井东, 刘瑞连, 王潍诚, 等. 2021. 原地宇宙成因核素(TCN)测年靶标制备: 以第四纪冰川研究中的应用为例[J]. 冰川冻土, 43(3): 767—775.
DOI
|
|
ZHAO Jing-dong, LIU Rui-lian, WANG Wei-cheng, et al. 2021. Terrestrial in situ cosmogenic nuclides(TCN)dating targets preparation: A case study of its application in Quaternary glaciations research[J]. Journal of Glaciology and Geocryology, 43(3): 767—775 (in Chinese).
|
[9] |
|
|
ZHENG Rong-zhang, CHEN Gui-hua, XU Xi-wei, et al. 2010. Contrast of several experiments of quartz isolation and purification for cosmogneic dating[J]. Seismology and Geology, 32(2): 303—311 (in Chinese).
|
[10] |
Benedetti L C, Woerd J. 2014. Cosmogenic Nuclide dating of earthquakes, faults, and toppled blocks[J]. Elements, 10(5): 357—361.
DOI
URL
|
[11] |
Gosse J C, Phillips F M. 2001. Terrestrial in situ cosmogenic nuclides: Theory and application[J]. Quaternary Science Reviews, 20(14): 1475—1560.
DOI
URL
|
[12] |
Hewitt K, Gosse J, Clague J J. 2011. Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya[J]. Geological Society of America Bulletin, 123(9): 1836—1850.
DOI
URL
|
[13] |
Hippolyte J C, Brocard G, Tardy M, et al. 2006. The recent fault scarps of the Western Alps(France): Tectonic surface ruptures or gravitational sackung scarps?A combined mapping, geomorphic, levelling, and 10Be dating approach[J]. Tectonophysics, 418(3-4): 255—276.
DOI
URL
|
[14] |
Hughes P D, Fink D, Fletcher W J, et al. 2014. Catastrophic rock avalanches in a glaciated valley of the High Atlas, Morocco: 10Be exposure ages reveal a 4.5ka seismic event[J]. Geological Society of America Bulletin, 126(7-8): 1093—1104.
|
[15] |
Kohl C P, Nishiizumi K. 1992. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides[J]. Geochimica et Cosmochimica Acta, 56(9): 3583—3587. doi: https://doi.org/10.1016/0016-7037(92)90401—4.
|
[16] |
Shen X M, Li D W, Tian Y T, et al. 2016. Late Pleistocene-Holocene slip history of the Langshan-Seertengshan piedmont fault(Inner Mongolia, northern China)from cosmogenic10Be dating on a bedrock fault scarp[J]. Journal of Mountain Science, 13(5): 882—890.
DOI
URL
|
[17] |
Zou J J, He H L, Yokoyama Y, et al. 2020. Seismic history of a bedrock fault scarp using quantitative morphology together with multiple dating methods: A case study of the Luoyunshan piedmont fault, southwestern Shanxi Rift, China[J]. Tectonophysics, 788: 228473. https://doi.org/10.1016/j.tecto.2020.228473.
DOI
URL
|
[18] |
Zreda M, Noller J S. 1998. Ages of prehistoric earthquakes revealed by cosmogenic Chlorine-36 in a bedrock fault scarp at Hebgen Lake[J]. Science, 282(5391): 1097—1099.
PMID
|