地震地质 ›› 2023, Vol. 45 ›› Issue (2): 377-400.DOI: 10.3969/j.issn.0253-4967.2023.02.005
修回日期:
2023-02-10
出版日期:
2023-04-20
发布日期:
2023-05-18
作者简介:
蒋锋云,男,1978年生,高级工程师,主要从事地壳形变机理与地震长期预测研究,E-mail:jfy267862@163.com。
基金资助:
JIANG Feng-yun(), JI Ling-yun, ZHU Liang-yu, LIU Chuan-jin
Revised:
2023-02-10
Online:
2023-04-20
Published:
2023-05-18
摘要:
海原-六盘山构造区为青藏高原东北部构造变形最为显著的区域之一, 历史强震活动频繁, 是研究青藏高原NE向扩展的重要窗口和地震孕育过程的理想场所。文中处理了跨海原-六盘山断裂2014-2020年期间2个轨道的时序Sentinel-1A/B SAR数据, 获得了该区域InSAR视线向现今的地壳形变场。融合公开发表的近十多年时间尺度的水平GPS地壳运动速度场, 获得了研究区高密度地壳水平形变场。对比GPS、水准和InSAR观测结果, 以及GPS-InSAR融合的高密度水平形变场, 分析讨论了该区域的地壳形变、应变场特征及其与构造之间的对应关系。主要结论如下: 1)GPS和InSAR观测表明, 1920年海原8.5级大地震的震后黏弹性松弛效应在海原断裂南侧至今仍较为明显; 2)GPS-InSAR高分辨率水平形变场表明, 狭义海原断裂左旋滑动速率的递减主要发生在中东段, 而中西段递减并不显著, 可能与海原断裂向六盘山断裂之间由左旋走滑向逆冲推覆构造转换有关; 3)六盘山断裂中-南段的地壳垂直形变和水平形变场特征均显示, 该段断裂可能处于强震孕育的中晚期, 根据反演得到的断层运动参数和地震地质资料, 估算六盘山断裂中-南段发生强震的最大矩震级约达7.5级; 4)研究区应变积累较快的区域主要集中在海原断裂附近和海原断裂-香山-天景山断裂之间的左旋剪切区, 香山-天景山断裂东南段的应变率场和周围相比明显偏小, 存在应变不匹配现象, 可能与强震孕育有关。
中图分类号:
蒋锋云, 季灵运, 朱良玉, 刘传金. 联合GPS和InSAR研究海原-六盘山断裂现今的地壳变形特征[J]. 地震地质, 2023, 45(2): 377-400.
JIANG Feng-yun, JI Ling-yun, ZHU Liang-yu, LIU Chuan-jin. THE PRESENT CRUSTAL DEFORMATION CHARACTERISTICS OF THE HAIYUAN-LIUPANSHAN FAULT ZONE FROM INSAR AND GPS OBSERVATIONS[J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 377-400.
图1 海原-六盘山构造区的动力环境、地形、主要断层和6.0级以上地震震中 HYF 海原断裂(S1、S2、S3、S4); LPSF 六盘山断裂; MMSF 毛毛山断裂; LHSF 老虎山断裂; GLF 古浪断裂; XS-TJSF 香山-天景山断裂; GG-BJF 固关-宝鸡断裂
Fig. 1 Dynamic environment, topography, main faults and earthquake epicentre(M≥6.0)in Haiyuan-Liupanshan tectonic region.
图2 海源-六盘山地区的GPS速度场 a 六盘山地区现今的水准观测垂直形变速率(据Hao等(2014)的数据绘制); b 平行于海原断裂中西段的GPS速度场。图中的颜色表示速率大小, 箭头方向表示速度的方向
Fig. 2 GPS velocity field in Haiyuan-Liupanshan area.
轨道号 | 轨道方向 | 波长/cm | 轨道方位角/(°) | 影像数/景 | 参与计算影像数/景 | 干涉图数/幅 |
---|---|---|---|---|---|---|
157 | 升轨 | 5.6 | -13 | 90 | 84 | 259 |
62 | 降轨 | 5.6 | 193 | 118 | 91 | 893 |
表1 研究区域Sentinel-1卫星影像参数
Table1 Sentinel Image Parameters in the study area
轨道号 | 轨道方向 | 波长/cm | 轨道方位角/(°) | 影像数/景 | 参与计算影像数/景 | 干涉图数/幅 |
---|---|---|---|---|---|---|
157 | 升轨 | 5.6 | -13 | 90 | 84 | 259 |
62 | 降轨 | 5.6 | 193 | 118 | 91 | 893 |
图6 跨海原断裂剖面平行断层的速率投影 图b中灰色小点为平行于断层方向的InSAR观测速率, 带误差棒的红色圆点为将沿剖面走向每隔5km方框内的数据去除大于2倍均方根误差的点后的数据平均值, 带误差棒的蓝色圆点为剖面内平行于断层方向的GPS速率
Fig. 6 Projection of parallel fault rates across the Haiyuan fault section.
图8 InSAR-GPS融合后的速度场EW向(a)和SN向(b)速率分量; 使用GPS结果进行内插得到的EW向(c)和SN向(d)速率分量 图a、b中, 带颜色的圈代表相应位置GPS站点的速度分量(Wang et al., 2020); 图a、c中, 正值表示E向运动, 负值表示W向运动; 图b、d中, 正值表示N向运动, 负值表示S向运动
Fig. 8 V-east(a) and V-north(b) components of the InSAR-GPS integrated velocity field. V-east(c) and V-north(d) components interpolated only using GPS data.
图11 跨六盘山断裂中-南段垂直断裂方向的水平运动速率(红点)及二维螺旋位错模型拟合曲线(蓝线)
Fig. 11 Horizontal rate in the vertical fault direction crosses mid-south section of the Liupanshan fault(red dot) and the fitting curve using a two-dimensional screw dislocation model(blue line).
[1] | 崔笃信, 王庆良, 胡亚轩, 等. 2009. 用GPS数据反演海原断裂带断层滑动速率和闭锁深度[J]. 地震学报, 31(5): 516-525. |
CUI Du-xin, WANG Qing-liang, HU Ya-xuan, et al. 2009. Inversion of GPS data for slip rates and locking depths of the Haiyuan fault[J]. Acta Seismologica Sinica, 31(5): 516-525. (in Chinese) | |
[2] | 戴洪宝, 许继影. 2016. 海原断裂东段至六盘山断裂西段GPS剖面地壳变形与应变积累分析[J]. 大地测量与地球动力学, 36(4): 343-345. |
DAI Hong-bao, XU Ji-ying. 2016. Analysis of the GPS section deformation and strain accumulation of the eastern Haiyuan and the western Liupanshan faults[J]. Journal of Geodesy and Geodynamics, 36(4): 343-345. (in Chinese) | |
[3] | 邓起东, 程绍平, 闵伟, 等. 1999. 鄂尔多斯块体新生代构造活动和动力学的讨论[J]. 地质力学学报, 5(3): 13-21. |
DENG Qi-dong, CHENG Shao-ping, MIN Wei, et al. 1999. Discussion on Cenozoic tectonics and dynamics of Ordos block[J]. Journal of Geomechanics, 5(3): 13-21. (in Chinese) | |
[4] | 杜方, 闻学泽, 冯建刚, 等. 2018. 六盘山断裂带的地震构造特征与强震危险背景[J]. 地球物理学报, 61(2): 545-559. |
DU Fang, WEN Xue-ze, FENG Jian-gang, et al. 2018. Seismo-tectonics and seismic potential of the Liupanshan fault zone(LPSFZ), China[J]. Chinese Journal of Geophys, 61(2): 545-559. (in Chinese) | |
[5] | 胡亚轩, 崔笃信, 张希, 等. 2009. 用GPS数据反演分析海原断裂带分段活动特征[J]. 西北地震学报, 31(3): 227-253. |
HU Ya-xuan, CUI Du-xin, ZHANG Xi, et al. 2009. Inversion and analysis of the active characteristics of subsections of Haiyuan fault belt using GPS data[J]. Northwestern Seismological Journal, 31(3): 227-253. (in Chinese) | |
[6] | 蒋锋云, 王庆良, 朱良玉, 等. 2011. 汶川地震震前龙门山以西地壳垂直隆升机理分析[J]. 大地测量与地球动力学, 31(5): 26-29. |
JIANG Feng-yun, WANG Qing-liang, ZHU Liang-yu, et al. 2011. Mechanism analysis of vertical uplift of crust in the west of Longmenshan before Wenchuan MS8.0 earthquake[J]. Journal of Geodesy and Geodynamics, 31(5): 26-29. (in Chinese) | |
[7] | 蒋锋云, 朱良玉, 王双绪, 等. 2013. 青藏东北缘块体水平运动特征研究[J]. 大地测量与地球动力学, 33(2): 13-17. |
JIANG Feng-yun, ZHU Liang-yu, WANG Shuang-xu, et al. 2013. Horizontal movement characteristics of northeastern margin of Qinghai-Tibet crustal blocks[J]. Journal of Geodesy and Geodynamics, 33(2): 13-17. (in Chinese) | |
[8] | 江在森, 马宗晋, 张希, 等. 2003. GPS初步结果揭示的中国大陆水平应变场与构造变形[J]. 地球物理学报, 46(3): 352-358. |
JIANG Zai-sen, MA Zong-jin, ZHANG Xi, et al. 2003. Horizontal strain field and tectonic deformation of China mainland revealed by preliminary GPS result[J]. Chinese Journal of Geophysics, 46(3): 352-358. (in Chinese) | |
[9] | 李海兵, 戚学祥, 朱迎堂, 等. 2004. 2001年东昆仑地震(MS=8.1)不对称的同震地表破裂构造[J]. 地质学报, 78(5): 633-640. |
LI Hai-bing, QI Xue-xiang, ZHU Ying-tang, et al. 2004. Asymmetrical co-seismic surface ruptures in the east Kunlun earthquake(MS=8.1), northern Tibetan plateau, China[J]. Acta Geologica Sinica, 78(5): 633-640. (in Chinese) | |
[10] | 李强, 江在森, 武艳强, 等. 2014. 利用GPS资料反演海原-六盘山断裂带闭锁程度与滑动亏损分布[J]. 武汉大学学报(信息科学版), 39(5): 575-580. |
LI Qiang, JIANG Zai-sen, WU Yan-qiang, et al. 2014. Inversion of locking and distribution of slip deficit in Haiyuan-Liupan fault zone using GPS data[J]. Geomatics and Information Science of Wuhan University, 39(5): 575-580. (in Chinese) | |
[11] | 刘雷, 蒋锋云, 朱良玉. 2020. 南北地震带北段现今运动特征及地震活动性分析[J]. 地震研究, 43(4): 658-665. |
LIU Lei, JIANG Feng-yun, ZHU Liang-yu. 2020. Characteristics of recent crustal movement and seismicity in the northern section of the North-South Seismic Belt[J]. Journal of Seismological Research, 43(4): 658-665. (in Chinese) | |
[12] | 刘雷, 李玉江, 朱良玉, 等. 2021. 1947年达日M7.7地震对巴颜喀拉块体边界断裂应力影响的数值模拟[J]. 地球物理学报, 64(7): 2221-2231. |
LIU Lei, LI Yu-jiang, ZHU Liang-yu, et al. 2021. Influence of the 1947 Dari M7.7 earthquake on stress evolution along the boundary fault of the Bayan Har block: insights from numerical simulation[J]. Chinese Journal of Geophysics, 64(7): 2221-2231. (in Chinese) | |
[13] | 乔鑫, 屈春燕, 单新建, 等. 2019. 基于时序InSAR的海原断裂带形变特征及运动学参数反演[J]. 地震地质, 41(6): 1481-1496. |
QIAO Xin, QU Chun-yan, SHAN Xin-jian, et al. 2019. Deformation characteristics and kinematic parameters inversion of Haiyuan fault zone based on time series InSAR[J]. Seismology and Geology, 41(6): 1481-1496. (in Chinese) | |
[14] | 石富强, 邵志刚, 占伟, 等. 2018. 青藏高原东北缘活动断裂剪切模量及应力状态数值模拟[J]. 地球物理学报, 61(9): 3651-3663. |
SHI Fu-qiang, SHAO Zhi-gang, ZHAN Wei, et al. 2018. Numerical modeling of the shear modulus and stress state of active faults in the northeastern margin of the Tibetan plateau[J]. Chinese Journal of Geophys, 61(9): 3651-3663. (in Chinese) | |
[15] | 王庆良, 崔笃信, 张希, 等. 2010. 龙门山及汶川 MS8.0 地震垂直形变场研究[J]. 国际地震动态, (6): 11-12. |
WANG Qing-liang, CUI Du-xin, ZHANG Xi, et al. 2010. Studies on surface vertical deformation of the Longmenshan and the Wenchuan MS8.0 earthquake[J]. Recent Developments in World Seismology, (6): 11-12. (in Chinese) | |
[16] | 王伟涛, 张培震, 郑德文, 等. 2014. 青藏高原东北缘海原断裂带晚新生代构造变形[J]. 地学前缘, 21(4): 266-274. |
WANG Wei-tao, ZHANG Pei-zhen, ZHENG De-wen, et al. 2014. Late Cenozoic tectonic deformation of the Haiyuan fault zone in the northeastern margin of the Tibetan plateau[J]. Earth Science Frontiers, 21(4): 266-274. (in Chinese) | |
[17] | 吴东霖, 葛伟鹏, 魏聪敏. 2020. 利用Sentinel-1合成孔径雷达干涉测量技术监测海原断裂现今地壳变形特征[J]. 地震工程学报, 42(5): 1055-1064. |
WU Dong-lin, GE Wei-peng, WEI Cong-min. 2020. Characteristics of present-day crustal deformation along the Haiyuan fault zone using PS-InSAR method[J]. China Earthquake Engineering Journal, 42(5): 1055-1064. (in Chinese) | |
[18] | 武艳强, 江在森, 朱爽, 等. 2020. 中国大陆西部GNSS变形特征及其与M≥7.0强震孕育的关系[J]. 中国地震, 36(4): 756-766. |
WU Yan-qiang, JIANG Zai-sen, ZHU Shuang, et al. 2020. GNSS deformation characteristics and its relationship with M≥7. 0 strong earthquakes in western China[J]. Earthquake Research in China, 36(4): 756-766. (in Chinese) | |
[19] | 莘海亮, 曾宪伟, 康敏, 等. 2020. 海原弧形构造区地壳三维精细速度结构成像[J]. 地球物理学报, 63(3): 897-914. |
XIN Hai-liang, ZENG Xian-wei, KANG Min, et al. 2020. Crustal fine velocity structure of the Haiyuan arcuate tectonic zone from double-difference tomography[J]. Chinese Journal of Geophys, 63(3): 897-914. (in Chinese) | |
[20] | 张培震, 邓起东, 张国民, 等. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 33(S1): 12-20. |
ZHANG Pei-zhen, DENG Qi-dong, ZHANG Guo-min, et al. 2003. Strong earthquake activity and active blocks in Chinese Mainland[J]. Science in China(Ser D), 33(S1): 12-20. (in Chinese) | |
[21] | 张晓亮, 师昭梦, 蒋锋云, 等. 2011. 海原-六盘山弧型断裂及其附近最新构造变形演化分析[J]. 大地测量与地球动力学, 31(3): 20-24. |
ZHANG Xiao-liang, SHI Zhao-meng, JIANG Feng-yun, et al. 2011. Research on late tectonic deformation evolvement of Huaiyuan-Liupanshan arc fault and its surrounding area[J]. Journal of Geodesy and Geodynamics, 31(3): 20-24. (in Chinese) | |
[22] | 郑文俊, 张培震, 袁道阳, 等. 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721. |
ZHENG Wen-jun, ZHANG Pei-zhen, YUAN Dao-yang, et al. 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese) | |
[23] | 邹镇宇. 2015. 地表动态大地测量资料反映的孕震断层变形机制研究[D]. 北京: 中国地震局地质研究所:28-30. |
ZOU Zhen-yu. 2015. Deformation mechanism of seismogenic faults derived from surface dynamic geodetic data[D]. Institute of Geology, China Earthquake Administration, Beijing: 28-30. (in Chinese) | |
[24] | 邹镇宇, 江在森, 武艳强, 等. 2015. 针对一般倾角走滑/倾滑位移理论公式的改进[J]. 大地测量与地球动力学, 35(3): 460-468. |
ZOU Zhen-yu, JIANG Zai-sen, WU Yan-qiang, et al. 2015. Improvements for the strike/dip-slip displacement theory formula of general dip fault[J]. Journal of Geodesy and Geodynamics, 35(3): 460-468. (in Chinese) | |
[25] |
Devries P M R, Meade B J. 2013. Earthquake cycle deformation in the Tibetan plateau with a weak mid-crustal layer[J]. Journal of Geophysical Research: Solid Earth, 118(6): 3101-3111.
DOI URL |
[26] |
Fuhrmann T, Caro Cuenca M, Knöpfler A, et al. 2015. Estimation of small surface displacements in the Upper Rhine Graben area from a combined analysis of PS-InSAR, levelling and GNSS data[J]. Geophysical Journal International, 203(1): 614-631.
DOI URL |
[27] |
Gaudemer Y, Tapponnier P, Meyer B, et al. 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the 'Tianzhu gap', on the western Haiyuan Fault, Gansu(China)[J]. Geophysical Journal International, 120(3): 599-645.
DOI URL |
[28] |
Goldstein R M, Werner C L. 1998. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 25(21): 4035-4038.
DOI URL |
[29] | Gudmundsson S, Sigmundsson F, Carstensen J M. 2002. Three-dimensional surface motion maps estimated from combined interferometric synthetic aperture radar and GPS data[J]. Journal of Geophysical Research: Solid Earth, 107(B10): 2250. |
[30] |
Guglielmino F, Nunnari G, Puglisi G, et al. 2011. Simultaneous and integrated strain tensor estimation from geodetic and satellite deformation measurements to obtain three-dimensional displacement maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 49(6): 1815-1826.
DOI URL |
[31] |
Hao M, Wang Q L, Shen Z K, et al. 2014. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan plateau[J]. Tectonophysics, 632: 281-292.
DOI URL |
[32] |
Hergert T, Heidbach O. 2010. Slip-rate variability and distributed deformation in the Marmara Sea fault system[J]. Nature Geoscience, 3(2): 132-135.
DOI |
[33] |
Hu J, Li Z W, Sun Q, et al. 2012. Three-dimensional surface displacements from InSAR and GPS measurements with variance component estimation[J]. IEEE Geoscience and Remote Sensing Letters, 9(4): 754-758.
DOI URL |
[34] | Jiang F Y, Ji L Y, Zhu L Y. 2020. 3D viscoelastic finite element study of post-seismic influence of the Wenchuan earthquake in the Sichuan-Yunnan region[J]. Pure and Applied Geophysics, 177: 50-70. |
[35] | Jolivet R, Lasserre C, Doin M P, et al. 2012. Shallow creep on the Haiyuan Fault(Gansu, China)revealed by SAR Interferometry[J]. Journal of Geophysical Research, 117(B6): B06401. |
[36] | Li Y C, Nocquet J M, Shan X J, et al. 2021. Geodetic observations of shallow creep on the Laohushan-Haiyuan Fault, northeastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 126(6): e2020JB021576. |
[37] |
Liang S M, Gan W J, Shen C Z, et al. 2013. Three-dimensional velocity field of present-day crustal motion of the Tibetan plateau derived from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 118(10): 5722-5732.
DOI URL |
[38] |
Lorenzo-Martín F, Roth F, Wang R J. 2006. Inversion for rheological parameters from post-seismic surface deformation associated with the 1960 Valdivia earthquake, Chile[J]. Geophysical Journal International, 164(1): 75-87.
DOI URL |
[39] |
Luo H P, Liu Y, Chen T, et al. 2016. Derivation of 3-D surface deformation from an integration of InSAR and GNSS measurements based on Akaike’s Bayesian Information Criterion[J]. Geophysical Journal International, 204(1): 292-310.
DOI URL |
[40] | Lyons S, Sandwell D. 2003. Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking[J]. Journal of Geophysical Research: Solid Earth, 108(B1): ETG11-1-ETG11-24. |
[41] |
Rice J R, Gu J C. 1983. Earthquake aftereffects and triggered seismic phenomena[J]. Pure and Applied Geophysics, 121(2): 187-219.
DOI URL |
[42] |
Samsonov S, Tiampo K, Rundle J, et al. 2007. Application of DInSAR-GPS optimization for derivation of fine-scale surface motion maps of southern California[J]. IEEE Transactions on Geoscience and Remote Sensing, 45(2): 512-521.
DOI URL |
[43] |
Savage J C. 2000. Viscoelastic coupling model for the earthquake cycle driven from below[J]. Journal of Geophysical Research, 105(B11): 25525-25532.
DOI URL |
[44] |
Savage J C, Burford R O. 1973. Geodetic determination of relative plate motion in central California[J]. Journal of Geophysical Research, 78(5): 832-845.
DOI URL |
[45] | Shen Z K, Liu Z. 2020. Integration of GPS and InSAR data for resolving 3-dimensional crustal deformation[J]. Earth and Space Science, 7(4): e2019EA001036. |
[46] | Shen Z K, Wang M, Zeng Y H, et al. 2015. Optimal interpolation of spatially discretized geodetic data[J]. Bulletin of the Seismological Society of America, 105(4): 2117-2127. |
[47] |
Song X G, Jiang Y, Shan X J, et al. 2019. A fine velocity and strain rate field of present-day crustal motion of the northeastern Tibetan plateau inverted jointly by InSAR and GPS[J]. Remote Sensing, 11(4): 435.
DOI URL |
[48] |
Walters R J, Parsons B, Wright T J. 2014. Constraining crustal velocity fields with InSAR for Eastern Turkey: Limits to the block-like behavior of Eastern Anatolia[J]. Journal of Geophysical Research: Solid Earth, 119(6): 5215-5234.
DOI URL |
[49] |
Wang H, Wright T J, Liu-Zeng J, et al. 2019. Strain rate distribution in south-central Tibet from two decades of InSAR and GPS[J]. Geophysical Research Letters, 46(10): 5170-5179.
DOI |
[50] | Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. |
[51] |
Yagüe-Martínez N, Prats-Iraola P, Rodriguez-Gonzalez F, et al. 2016. Interferometric processing of Sentinel-1 TOPS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 54(4): 2220-2234.
DOI URL |
[52] |
Yu C, Li Z H, Penna N T. 2018. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J]. Remote Sensing of Environment, 24: 109-121.
DOI URL |
[53] |
Zhang P Z, Burchfiel B C, Molnar P, et al. 1990. Late Cenozoic tectonic evolution of the Ningxia-Hui Autonomous region, China[J]. Geological Society of America Bulletin, 102(11): 1484-1498.
DOI URL |
[54] |
Zhang W T, Ji L Y, Zhu L Y, et al. 2022. Current slip and strain rate distribution along the Ganzi-Yushu-Xianshuihe fault system based on InSAR and GPS observations[J]. Frontiers in Earth Science, 10: 821761.
DOI URL |
[1] | 赵德政, 屈春燕, 张桂芳, 龚文瑜, 单新建, 朱传华, 张国宏, 宋小刚. 基于InSAR技术的同震形变获取、地震应急监测和发震构造研究应用进展[J]. 地震地质, 2023, 45(2): 570-592. |
[2] | 靳立周, 王盈, 常文斌, 田颖颖, 袁仁茂. 基于D-InSAR和PFC2D技术的白格滑坡稳定性分析[J]. 地震地质, 2023, 45(1): 153-171. |
[3] | 于书媛, 黄显良, 郑海刚, 李玲利, 骆佳骥, 丁娟, 范晓冉. 2022年门源MW6.7地震的同震破裂模型及应力研究[J]. 地震地质, 2023, 45(1): 286-303. |
[4] | 华俊, 龚文瑜, 单新建, 王振杰, 季灵运, 刘传金, 李永生. 多轨道InSAR震间形变速率场拼接方法[J]. 地震地质, 2022, 44(5): 1172-1189. |
[5] | 于书媛, 张国宏, 张迎峰, 丁娟, 张建龙, 范晓冉, 王绍俊. InSAR数据约束的2021年西藏比如MW5.8地震同震滑动分布及库仑应力变化[J]. 地震地质, 2022, 44(5): 1190-1202. |
[6] | 张国庆, 祝意青, 梁伟锋. 青藏高原东缘扶边河断裂周边地壳密度及垂向构造应力特征[J]. 地震地质, 2022, 44(3): 578-589. |
[7] | 王雨晴, 冯万鹏, 张培震. 交角约90°共轭断裂的现今形变及对构造应力场的指示意义——以2019年MW≥6.4菲律宾地震序列为例[J]. 地震地质, 2022, 44(2): 313-332. |
[8] | 徐芳, 鲁人齐, 王帅, 江国焰, 龙锋, 王晓山, 苏鹏, 刘冠伸. 基于多元约束方法的2020年四川青白江MS5.1地震构造研究[J]. 地震地质, 2022, 44(1): 220-237. |
[9] | 邱江涛, 季灵运, 刘雷, 刘传金. 2020年西藏尼玛MW6.3地震的InSAR同震形变与构造意义[J]. 地震地质, 2021, 43(6): 1586-1599. |
[10] | 徐晓雪, 季灵运, 朱良玉, 王光明, 张文婷, 李宁. 漾濞MS6.4地震同震形变特征及发震构造探讨[J]. 地震地质, 2021, 43(4): 771-789. |
[11] | 刘瑞春, 张锦, 郭文峰, 陈慧, 郑亚迪, 成诚. 鄂尔多斯块体东南缘现今的变形特征与构造模式探讨[J]. 地震地质, 2021, 43(3): 540-558. |
[12] | 华俊, 赵德政, 单新建, 屈春燕, 张迎峰, 龚文瑜, 王振杰, 李成龙, 李彦川, 赵磊, 陈晗, 范晓冉, 王绍俊. 2021年青海玛多MW7.3地震InSAR的同震形变场、断层滑动分布及其对周边区域的应力扰动[J]. 地震地质, 2021, 43(3): 677-691. |
[13] | 代成龙, 张玲, 梁诗明, 张克亮, 熊小慧, 甘卫军. 中亚塔拉斯-费尔干纳断裂现今的走滑速率及其分段变化特征——基于GPS观测的深究[J]. 地震地质, 2021, 43(2): 263-279. |
[14] | 张迎峰, 单新建, 张国宏, 李成龙, 温少妍, 解全才. 2020年MW6.0柯坪塔格地震的变形特征及其对周边地震危险性的启示[J]. 地震地质, 2021, 43(2): 377-393. |
[15] | 张文婷, 季灵运, 朱良玉, 蒋锋云, 徐晓雪. 南天山前陆盆地的一次典型逆冲破裂事件——2020年新疆伽师6.4级地震[J]. 地震地质, 2021, 43(2): 394-409. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||