地震地质 ›› 2023, Vol. 45 ›› Issue (1): 29-48.DOI: 10.3969/j.issn.0253-4967.2023.01.002
收稿日期:
2022-04-19
修回日期:
2022-08-28
出版日期:
2023-02-20
发布日期:
2023-03-24
通讯作者:
* 周永胜, 男, 1969年, 研究员, 从事高温高压岩石流变学实验研究, E-mail: zhouysh@ies.ac.cn。
作者简介:
雷蕙如, 女, 1995年生, 2022年于中国地震局地质研究所获得固体地球物理学博士学位, 研究方向为高温高压岩石力学实验, E-mail: leihuiru@ies.ac.cn。
基金资助:
LEI Hui-ru(), ZHOU Yong-sheng()
Received:
2022-04-19
Revised:
2022-08-28
Online:
2023-02-20
Published:
2023-03-24
摘要:
大陆断层脆塑性转化带的强度和滑动稳定性一直是断层力学中研究的重点。从20世纪末起, 前人针对脆塑性转化带的摩擦和流变特性开展了大量实验和理论研究, 探究脆塑性转化带的强度和变形机制随温度、 压力、 滑动速率等因素的变化规律。文中总结了描述断层脆塑性转化带强度和稳定性的半定量经验方程和定量本构方程, 对比了各种模型的优缺点, 发现通过数值拟合方法得到的经验模型高估了断层脆塑性转化带的强度, 而基于微观物理机制的脆塑性转化带强度模型更符合自然条件下的断层摩擦行为。但现有的微观物理模型还需进一步考虑剪切带中纳米颗粒的动力学影响及不同类型的微观变形机制约束。
中图分类号:
雷蕙如, 周永胜. 大陆断层脆塑性转化带强度与孕震深度的定量研究[J]. 地震地质, 2023, 45(1): 29-48.
LEI Hui-ru, ZHOU Yong-sheng. EMPIRICAL QUANTITATIVE ANALYSIS OF STRENGTH AND SEISMOGENIC DEPTHS FOR THE BRITTLE-DUCTILE TRANSITION OF CONTINENTAL FAULT ZONE[J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 29-48.
图1 a 地壳强度模型; b 速度与状态依赖性本构方程给出的断层稳定性模型(Shimamoto et al., 2014)
Fig. 1 The crustal strength profile(a), fault stability model based on rate- and state-dependent constitutive equation (b)(from Shimamoto et al., 2014).
图2 a 地壳强度与围压示意图; b 地壳强度与深度剖面(Pec et al., 2012; 修改自Kohlstedt et al., 1995) a 从局部化的脆性变形到普遍剪切的半脆性变形(B-D为脆塑性转换点), 最终在固定温度和应变速率下转换为全塑性流动。摩擦由正应力控制, 塑性流动由温度和应变速率控制; b 点1为脆性-半脆性转化点, 但点2不一定是图a中的半脆性-塑 性转化点, 这取决于应变速率和温度梯度
Fig. 2 Schematic diagram of Crustal Strength and Confining Pressure(a). Schematic diagram of a crustal strength profile in strength vs depth(b)(Pec et al., 2012; modified after Kohlstedt et al., 1995).
图3 摩擦-流变定律的拟合结果和盐岩的稳态剪应力τss数据的对比(Shimamoto et al., 2014) a 盐岩剪应力与正应力及温度的关系图, 温度和正应力呈线性增加; b 4个不同温度下的剪切应力和正应力的关系图; c 剪切应变和剪切应变率在压力不敏感的全塑性变形域的关系图; d 不同温度下τss的速度依赖性。实线为使用摩擦-流动定律 以及最小二乘法得到的最佳拟合曲线, 圆点为实验数据。与竖线相连的十字符号表示黏滑过程中剪切应力的变化范围
Fig. 3 Friction-to-flow law compared with the steady state shear resistance τss of halite(from Shimamoto et al., 2014).
图4 稳态剪切应力τss的速度依赖性曲线(Shimamoto et al., 2014) 中纵坐标用有效正应力σ对τss进行归一化, 表示速度与状态依赖性摩擦本构方程中的a-b值
图a The rate dependency of the steady state shear resistance τss(from Shimamoto et al., 2014).
图5 a 粗糙剪切面示意图, 实际接触面积Ar远小于表观接触面积; b 放大局部粗糙接触面(Aharonov et al., 2018) 中红色区域为高度压缩区, 黄色区域为最大压缩区, 在该区域内的蠕变变形由压缩方向的正应力驱动。可能的机制有位错滑移、 压溶或亚临界裂纹扩展。而绿色区域划分了接触界面, 其中的蠕变变形由剪应力驱动(剪切蠕变)。这2种蠕变 过程产生的原因不同, 摩擦强度受2种蠕变共同控制
图b Illustration of shearing rough surfaces, the actual contact area Ar is much smaller than the apparent contact area(a). Zoom into the local rough contact surface(b)(from Aharonov et al., 2018).
图7 上地壳断层的概念模型(Verberne et al., 2020) 右侧为CNS模型对于断层剪切带的意义, 该模型涉及蠕变控制的压实作用和颗粒流膨胀作用之间的竞争(分别用 ε ˙ c p和 ε ˙ g r 表示)
Fig. 7 Conceptual model for an upper-crustal fault zone(from Verberne et al., 2020).
图8 Chen-Niemeijer-Spiers模型中假定的断层泥几何形状①(Chen et al., 2016)
Fig. 8 Gouge layer geometry assumed in Chen-Niemeijer-Spiers(CNS)mode l (Chen et al., 2016).
图9 断层泥的孔隙度(a)和滑动速率(b)在均匀断层上的破裂成核、 扩展和停止过程中的时空演化特征(Verberne et al., 2020)
Fig. 9 Spatio-temporal evolution of fault gouge porosity(a)and slip rate(b)during nucleation, propagation, and arrest of a rupture on a fault with uniform frictional properties(from Verberne et al., 2020).
图10 CNS模型的实验数据拟合①(Verberne et al., 2020, 修改自Chen et al., 2016, 2021)
Fig. 10 Reproduction of experimental data using the CNS mode l (from Verberne et al., 2020, modified after Chen et al., 2016, 2021).
[1] | 何昌荣. 1999. 2种摩擦本构关系的对比研究[J]. 地震地质, 21(2): 137146. |
HE Chang-rong. 1999. Comparing two types of rate and state dependent friction laws[J]. Seismology and Geology, 21(2): 137146. | |
[2] | 雷蕙如, 周永胜, 姚文明, 等. 2022. 安宁河断层地震成核条件研究: 来自天然花岗岩断层泥摩擦实验的启示[J]. 地球物理学报, 65(3): 978991. |
LEI Hui-ru, ZHOU Yong-sheng, YAO Wen-ming, et al. 2022. Earthquake nucleation conditions of Anninghe Fault: constrains from frictional experiments on natural granite gouge[J]. Chinese Journal of Geophysics, 65(3): 978991. (in Chinese) | |
[3] | 任凤文, 何昌荣. 2014. 热水条件下花岗质糜棱岩的摩擦滑动实验研究[J]. 地球物理学报, 57(3): 877883. |
REN Feng-wen, HE Chang-rong. 2014. An experimental study of frictional sliding of granitic mylonite under hydrothermal conditions[J]. Chinese Journal of Geophysics, 57(3): 877883. (in Chinese) | |
[4] | 张雷, 何昌荣, 周永胜. 2020. 水热条件下富层状硅酸盐矿物糜棱岩的摩擦特性实验研究[J]. 地球物理学报, 63(2): 573582. |
ZHANG Lei, HE Chang-rong, ZHOU Yong-sheng. 2020. Experiments on frictional properties of phyllosilicate-rich mylonite under hydrothermal conditions[J]. Chinese Journal of Geophysics, 63(2): 573582. (in Chinese) | |
[5] |
张媛媛, 周永胜. 2012. 断层脆塑性转化带的强度与变形机制及其流体和应变速率的影响[J]. 地震地质, 34(1): 172194. doi: 10.3969/j.issn.0253-4967.2012.01.016.
DOI |
ZHANG Yuan-yuan, ZHOU Yong-sheng. 2012. The strength and deformation mechanisms of brittle-plastic transition zone, and the effects of strain rate and fluid[J]. Seismology and Geology, 34(1): 172194. (in Chinese) | |
[6] | 周永胜, 何昌荣. 2000. 地壳岩石变形行为的转变及其温压条件[J]. 地震地质, 22(2): 167178. |
ZHOU Yong-sheng, HE Chang-rong. 2000. Deformation behavior transition of crustal rocks and its temperature-pressure condition[J]. Seismology and Geology, 22(2): 167178. (in Chinese) | |
[7] | 周永胜, 何昌荣. 2003. 地壳主要岩石流变参数及华北地壳流变性质研究[J]. 地震地质, 25(1): 109122. |
ZHOU Yong-sheng, HE Chang-rong. 2003. Rheological parameters of crustal rocks and crustal rheology of north China[J]. Seismology and geology, 25(1): 109122. (in Chinese) | |
[8] |
Aharonov E, Scholz C H. 2018. A physics-based rock friction constitutive law: Steady state friction[J]. Journal of Geophysical Research: Solid Earth, 123(2): 15911614.
DOI URL |
[9] |
Aharonov E, Scholz C H. 2019. The brittle-ductile transition predicted by a physics-based friction law[J]. Journal of Geophysical Research: Solid Earth, 124(3): 27212737.
DOI |
[10] | Ampuero J P, Rubin A M. 2008. Earthquake nucleation on rate and state faults aging and slip laws[J]. Journal of Geophysical Research: Solid Earth, 113(B1): 121. |
[11] |
Bird P. 1978. Initiation of intracontinental subduction in the Himalaya[J]. Journal of Geophysical Research, 83(B10): 48835010.
DOI URL |
[12] |
Blanpied M L, Lockner D A, Byerlee J D. 1995. Frictional slip of granite at hydrothermal conditions[J]. Journal of Geophysical Research, 100(B7): 1304513064.
DOI URL |
[13] | Bos B, Spiers C J. 2002. Frictional-viscous flow of phyllosilicate-bearing fault rock: Microphysical model and implications for crustal strength profiles[J]. Journal of Geophysical Research, 107(B2): ECV1-1ECV1-13. |
[14] | Bowden F P, Tabor D. 1964. The Friction and Lubrication of Solids(Vol. 2)[M]. Oxford: Clarendon Press. |
[15] |
Brace W F, Kohlstedt D L. 1980. Limits on lithospheric stress imposed by laboratory experiments[J]. Journal of Geophysical Research, 85(B11): 62486252.
DOI URL |
[16] |
Brechet Y. Estrin Y. 1994. The effect of strain rate sensitivity on dynamic friction of metals[J]. Scripta Metallurgica et Materialia, 30(11): 14491454.
DOI URL |
[17] |
Byerlee J D. 1968. Brittle-ductile transition in rocks[J]. Journal of Geophysical Research, 73(14): 47414750.
DOI URL |
[18] | Byerlee J D. 1978. Friction of rocks[J]. Pure and Applied Geophysics, 116(4-5): 615626. |
[19] |
Carpenter B M, Ikari M J, Marone C. 2016. Laboratory observations of time-dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges[J]. Journal of Geophysical Research: Solid Earth, 121(2): 11831201.
DOI URL |
[20] |
Carter N L. 1976. Steady state flow of rocks[J]. Reviews of Geophysics, 14(3): 301360.
DOI URL |
[21] |
Carter N L, Tsenn M C. 1987. Flow properties of continental lithosphere[J]. Tectonophysics, 136(1-2): 2763.
DOI URL |
[22] | Chen J Y, Niemeijer A R, Spiers C J. 2021. Microphysical modeling of carbonate fault friction at slip rates spanning the full seismic cycle[J]. Journal of Geophysical Research: Solid Earth, 126(3): e2020JB021024. |
[23] | Chen J Y, Spiers C J. 2016. Rate and state frictional and healing behavior of carbonate fault gouge explained using microphysical model[J]. Journal of Geophysical Research, 121(12): 86428665. |
[24] |
Chen J Y, Niemeijer A R, Spiers C J. 2017. Microphysically derived expressions for rate-and-state friction parameters, a, b, and Dc. Journal of Geophysical Research: Solid Earth, 122(12): 96279657.
DOI URL |
[25] | Chen J Y, Verberne B A, Niemeijer A R. 2020. Flow-to-friction transition in simulated calcite gouge: Experiments and microphysical modeling[J]. Journal of Geophysical Research: Solid Earth, 125(11): e2020JB019970. |
[26] | Chen J Y, Niemeijer A R, Spiers C J. 2022. Seismic fault slip behavior predicted from internal microphysical processes[J]. Journal of Geophysical Research: Solid Earth, 127: e2022JB024530. |
[27] |
Chester F M. 1988. The brittle-ductile transition in a deformation-mechanism map for halite[J]. Tectonophysics, 154(1-2): 125136.
DOI URL |
[28] |
Chester F M. 1994. Effects of temperature on friction: Constitutive equations and experiments with quartz gouge[J]. Journal of Geophysical Research, 99(B4): 72477261.
DOI URL |
[29] |
Chester F M, Higgs N G. 1992. Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions[J]. Journal of Geophysical Research, 97(B2): 18591870.
DOI URL |
[30] |
den Hartog S A M, Peach C J, de Winter D A M, et al. 2012. Frictional properties of megathrust fault gouge at low sliding velocities: new data on effects of normal stress and temperature[J]. Journal of structural geology, 38: 156171.
DOI URL |
[31] | den Hartog S A M, Spiers C J. 2013. Influence of subduction zone conditions and gouge composition on frictional slip stability of megathrust faults[J]. Tectonophysics, 60: 7590. |
[32] | den Hartog S A M, Spiers C J. 2014. A microphysical model for fault gouge friction applied to subduction megathrusts[J]. Journal of Geophysical Research, 119(2): 15101529. |
[33] |
Di Toro G, Han R, Hirose T, et al. 2011. Fault lubrication during earthquakes[J]. Nature, 471: 494498.
DOI |
[34] | Dieterich J H. 1978. Time-dependent friction and the mechanics of stick-slip[J]. Rock Friction and Earthquake Prediction, 6: 790806. |
[35] | Dieterich J H. 1979. Modeling of rock friction: Experimental results and constitutive equations[J]. Journal of Geophysical Research, 84(B5): 21612168. |
[36] |
Evans B, Goetze C. 1979. The temperature variation of hardness of olivine and its implication for polycrystalline yield stress[J]. Journal of Geophysical Research, 84(B10): 55055524.
DOI URL |
[37] | Goetze C. 1978. The mechanisms of creep in olivine[J]. Philosophical Transactions of The Royal Society A, 288(1350): 99119. |
[38] |
Goetze C, Evans B. 1979. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics[J]. Geophysical Journal International, 59(3): 463478.
DOI URL |
[39] | Griggs D T. 1967. Hydrolytic weakening of quartz and other silicates[J]. Geophysical Journal International, 14(1-4): 1931. |
[40] | Gudehus G. 2011. Physical Soil Mechanics[M]. Springer, Berlin and Heidelberg, Germany. |
[41] | Gratier J P, Dysthe D K, Renard F. 2013. Chapter 2: The role of pressure solution creep in the ductility of the earth’s upper crust[J]. Advances in Geophysics, 54(5): 47179. |
[42] | Handin J, Hager R V, Friedman M, et al. 1963. Experimental deformation of sedimentary rocks under confining pressure: Pore pressure effects[J]. American Association of Petroleum Geologists, 47(5): 717755. |
[43] |
Heslot F, Baumberger T, Perrin B, et al. 1994. Creep, stick-slip, and dry friction dynamics: Experiments and a heuristic model[J]. Physical Review E, 49(6): 49734988.
PMID |
[44] |
Hirth G, Tullis J. 1992. Dislocation creep regimes in quartz aggregates[J]. Journal of Structural Geology, 14(2): 145159.
DOI URL |
[45] |
Hirth G, Tullis J. 1994. The brittle-plastic transition in experimentally deformed quartz aggregates[J]. Journal of Geophysical Research, 99(B6): 1173111747.
DOI URL |
[46] |
Ide S. 2014. Modeling fast and slow earthquakes at various scales[J]. Proceedings of Japan Academy, Series B, 90(8): 259277.
DOI URL |
[47] | Kawamoto E, Shimamoto T. 1997. Mechanical behavior of halite and calcite shear zones from brittle to fully-plastic deformation and a revised fault model[C]. In Proceedings of the 30th Inthernational Geological Congress, Beijing, China, 4-14: 89105. |
[48] |
Kawamoto E, Shimamoto T. 1998. The strength profile for biominerals shear zones: An insight from high-temperature shearing experiments on calcite-halite mixtures[J]. Tectonophysics, 295(1-2): 114.
DOI URL |
[49] | Kirby S H. 1977. State of Stress in the Lithosphere: Inference from the Flow Law of Olivine[M]. Birkhäuser Basel, Swiss: 245258. |
[50] | Kirby S H. 1980. Tectonic stresses in the lithosphere: Constraints provided by the experimental deformation of rocks[J]. Journal of Geophysical Research: Solid Earth, 85(B11): 63536363. |
[51] |
Kirby S H, Kronenberg A K. 1987. Rheology of the lithosphere: selected topics[J]. Reviews of Geophysics, 25(6): 12191244.
DOI URL |
[52] | Kohlstedt D L, Evans B, Mackwell S J. 1995. Strength of the lithosphere: constraints imposed by laboratory experiments[J]. Journal of Geophysical Research: Solid Earth, 100(17): 517587. |
[53] |
Marone C, Vidale J E, Ellsworth W. 1995. Fault healing inferred from time dependent variations in source properties of repeating earthquakes[J]. Geophysical Research Letters, 22(22): 30953098.
DOI URL |
[54] |
Martina K, Bernhard S. 1999. High differential stress and sublithostatic pore fluid pressure in the ductile regime: Microstructure evidence for short-term post-seismic creep in the Sesia Zone, Western Alps[J]. Tectonophysics, 303(1-4): 263277.
DOI URL |
[55] |
Meissner R, Strehlau J. 1982. Limits of stresses in continental crusts and their relation to the depth-frequency distribution of shallow earthquakes[J]. Tectonics, 1(1): 7389.
DOI URL |
[56] |
Mercier J C C, Anderson D A, Carter N L. 1977. Stress in the lithosphere: Inferences from steady-state flow of rocks[J]. Pure and Applied Geophysics, 115(1-2): 199226.
DOI URL |
[57] |
Molnar P, Tapponnier P. 1981. A possible dependence of tectonic strength on the age of the crust in Asia[J]. Earth and Planetary Science Letters, 52(1): 107114.
DOI URL |
[58] | Nakatani M. 2001. Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology[J]. Journal of Geophysical Research: Solid Earth, 106(B7): 1334713380. |
[59] |
Niemeijer A R, Spiers C J. 2005. Influence of phyllosilicates on fault strength in the brittle-ductile transition: insights from rock analogue experiments, in High-strain zones: Structure and physical properties[J]. Geological Society, London, Special Publications, 245(1): 303327.
DOI URL |
[60] |
Niemeijer A R, Spiers C J. 2006. Velocity dependence of strength and healing behaviour in simulated phyllosilicate-bearing fault gouge[J]. Tectonophysics, 427(1-4): 231253.
DOI URL |
[61] | Niemeijer A R, Spiers C J. 2007. A microphysical model for strong velocity weakening in phyllosilicate-bearing fault gouges[J]. Journal of Geophysical Research: Solid Earth, 112(B10): B10405. |
[62] |
Noda H, Takahashi M. 2016. The effective stress law at a brittle-plastic transition with a halite gouge layer[J]. Geophysical Research Letters, 43(5): 19661972.
DOI URL |
[63] |
Ohnaka M. 1995. A shear failure strength law of rock in the brittle-plastic transition regime[J]. Geophysical Research Letters, 22(1): 2528.
DOI URL |
[64] | Paterson M S. 1995. A theory for granular flow accommodated by material transfer via an intergranular fluid[J]. Tectonophysics, 245(3-4): 135151. |
[65] |
Pec M, Stünitz H, Heilbronner R. 2012. Semi-brittle deformation of granitoid gouges in shear experiments at elevated pressures and temperatures[J]. Journal of Structural Geology, 38: 200221.
DOI URL |
[66] |
Putelat T, Dawes J H, Willis J R. 2011. On the microphysical foundations of rate-and-state friction[J]. Journal of the Mechanics and Physics of Solids, 59(5): 10621075.
DOI URL |
[67] | Ruina A. 1983. Slip instability and state variable friction laws[J]. Journal of Geophysical Research: Solid Earth, 88(B12): 1035910370. |
[68] |
Rutter E H. 1983. Pressure solution in nature, theory and experiment[J]. Journal of the Geological Society, 140(5): 725740.
DOI URL |
[69] |
Scholz C H. 1988. The brittle-plastic transition and the depth of seismic faulting[J]. Geologische Rundschau, 77(1): 319328.
DOI URL |
[70] |
Scholz C H. 1998. Earthquakes and friction laws[J]. Nature, 391(1998): 3742.
DOI |
[71] |
Shimamoto T. 1986. Transition between frictional slip and ductile flow for halite shear zones at room temperature[J]. Science, 231(4739): 711714.
PMID |
[72] |
Shimamoto T. 1989. The origin of S-C mylonites and a new fault-zone model[J]. Journal of Structural Geology, 11(1-2): 5164.
DOI URL |
[73] |
Shimamoto T, Noda H. 2014. A friction to flow constitutive law and its application to a 2-D modeling of earthquakes[J]. Journal of Geophysical Research: Solid Earth, 119(11): 80898106.
DOI URL |
[74] |
Sibson R H. 1977. Fault rocks and fault mechanics[J]. Journal of the Geological Society, 133(3): 191213.
DOI URL |
[75] | Sibson R H. 1982. Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States[J]. Bulletin of the Seismological Society of America, 72(1): 151163. |
[76] |
Stipp M, Stünitz H, Heilbronner R, et al. 2002. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700℃[J]. Journal of Structural Geology, 24(12): 18611884.
DOI URL |
[77] |
Stockhert B, Brix M R, Kleinschrodt R, et al. 1999. Thermochronometry and microstructures of quartz: A comparison with experimental flow laws and predictions on the temperature of the brittle-plastic transition[J]. Journal of Structural Geology, 21(3): 351369.
DOI URL |
[78] |
Trepmann C, Stöckhert B. 2001. Mechanical twinning of jadeite: An indication of syn seismic loading beneath the brittle-plastic transition[J]. International Journal of Earth Sciences, 90(1): 413.
DOI URL |
[79] | Trepmann C A, Stöckhert B. 2013. Short-wavelength undulatory extinction in quartz recording coseismic deformation in the middle crust: An experimental study[J]. Journal of Geophysical Research: Solid Earth, 4(2): 263276. |
[80] |
Tsenn M C, Carter N L. 1987. Upper limits of power law creep of rocks[J]. Tectonophysics, 136(1-2): 126.
DOI URL |
[81] |
van den Ende M P A, Chen J, Ampuero J P, et al. 2018a. A comparison between rate-and-state friction and microphysical models, based on numerical simulations of fault slip[J]. Tectonophysics, 733: 273295. https://doi.org/10.1016/j.tecto.2017.11.040.
DOI URL |
[82] |
van den Ende M P A, Niemeijer A R. 2018a. Time-dependent compaction as a mechanism for regular stick-slips[J]. Geophysical Research Letters, 45: 59595967.
DOI URL |
[83] | van den Ende M P A, Scuderi M M, Cappa F, et al. 2020. Extracting microphysical fault friction parameters from laboratory- and field injection experiments[J]. Journal of Geophysical Research: Solid Earth, 11(6): 22452256. |
[84] |
Verberne B A, de Bresser J H P, Niemeijer A R, et al. 2013. Nanocrystalline slip zones in calcite fault gouge show intense crystallographic pre-preferred orientation: Crystal plasticity at sub-seismic slip rates at 18-150℃[J]. Geology, 41(8): 863866.
DOI URL |
[85] |
Verberne B A, Niemeijer A R, De Bresser J H P, et al. 2015. Mechanical behavior and microstructure of simulated calcite fault gouge sheared at 20-600℃: Implications for natural faults in limestones[J]. Journal of Geophysical Research: Solid Earth, 120(12): 81698196.
DOI URL |
[86] | Verberne B A, van den Ende M P A, Chen J, et al. 2020. The physics of fault friction: Insights from experiments on simulated gouges at low shearing velocities[J]. Journal of Geophysical Research: Solid Earth, 11(6): 20752095. |
[87] | Weertman J. 1978. Creep laws for the mantle of the earth[J]. Philosophical Transactions of The Royal Society A, 288(1350): 926. |
[88] |
Weertman J, Weertman J R. 1975. High temperature creep of rock and mantle viscosity[J]. Annual Reviews of Earth and Planetary Science, 3: 293315.
DOI URL |
[89] | Wintsch R P, Yi K. 2002. Dissolution and replacement creep: A significant deformation mechanism in mid-crustal rocks[J]. Journal of Structural Geology, 24(6-7): 11791193. |
[90] | Yund R A, Blanpied M L, Tullis T E, et al. 1990. Amorphous material in high-strain experimental fault gouges[J]. Journal of Geophysical Research: Solid Earth, 95(B10): 1558915602. |
[91] |
Zhang L, He C R. 2016. Frictional properties of phyllosilicate-rich mylonite and conditions for the brittle-ductile transition[J]. Journal of Geophysical Research: Solid Earth, 121(4): 30173047.
DOI URL |
[1] | 宋娟, 周永胜, 杨伟红. 丽江MS7.0地震余震深度揭示出的中地壳脆塑性转化特征[J]. 地震地质, 2014, 36(1): 186-195. |
[2] | 邓起东, 闻学泽. 活动构造研究——历史、进展与建议[J]. 地震地质, 2008, 30(1): 1-30. |
[3] | 江娃利, 谢新生. 正倾滑活动断裂垂直位移定量研究中相关问题的讨论[J]. 地震地质, 2002, 24(2): 177-187. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||