地震地质 ›› 2022, Vol. 44 ›› Issue (3): 753-770.DOI: 10.3969/j.issn.0253-4967.2022.03.012
韩冰1)(), 汤吉1),*(), 赵国泽1), 王立凤1), 董泽义1), 范晔1), 孙贵成2)
收稿日期:
2021-05-11
修回日期:
2021-09-29
出版日期:
2022-06-20
发布日期:
2022-08-02
通讯作者:
汤吉
作者简介:
韩冰, 女, 1988年生, 2014年于中国地震局地质研究所获地球物理专业硕士学位, 工程师, 主要从事极低频电磁台网运维与数据分析, E-mail: zddhb@163.com。
基金资助:
HAN Bing1)(), TANG Ji1),*(), ZHAO Guo-ze1), WANG Li-feng1), DONG Ze-yi1), FAN Ye1), SUN Gui-cheng2)
Received:
2021-05-11
Revised:
2021-09-29
Online:
2022-06-20
Published:
2022-08-02
Contact:
TANG Ji
摘要:
文中对景谷台站记录到的7次同震电磁现象及2次较强地震在周围几个极低频台站引起的同震电磁现象进行了研究, 发现了总体形态与地震波相近的电磁波, 其幅度远大于地球感应产生的背景信号, 且垂直磁场强度约为水平磁场的10倍。对于同一台站记录到的多次同震电磁信号, 幅值与震级在对数域基本满足线性关系, 同时也受震源深度与震中距影响。 在同一地震中, 震中距越大, 台站记录到的同震电磁信号出现的时间越晚, 持续时间也相对较长, 但信号的幅值不仅受到震中距的影响, 还与观测点的近地表介质有关。通过小波能量谱可以看出, 同震电磁信号的主要频率为1~2Hz, 在同震信号初始阶段高频成分较多, 并表现出随震中距增加频率降低的特点; 同时相对于电场, 磁场记录的高频信息更加丰富。2014年景谷M6.6地震发生时, 在距离震中很近的台站记录到比同震信号更强的尖峰信号, 其在地震波到达之初出现。推测偶然的电磁强干扰与地面震动互相叠加是引起电磁信号强烈变化的原因。
中图分类号:
韩冰, 汤吉, 赵国泽, 王立凤, 董泽义, 范晔, 孙贵成. 极低频台站同震电磁信号特征分析[J]. 地震地质, 2022, 44(3): 753-770.
HAN Bing, TANG Ji, ZHAO Guo-ze, WANG Li-feng, DONG Ze-yi, FAN Ye, SUN Gui-cheng. ANALYSIS OF ELECTROMAGNETIC CO-SEISMIC PHENOMENA OBSERVED IN CSELF STATIONS[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(3): 753-770.
发震时刻(UTC) | 震级 /M | 北纬 /(°) | 东经 /(°) | 深度 /km | 参考位置 | 震中距 /km |
---|---|---|---|---|---|---|
2014-10-07 13:49:39 | 6.6 | 23.39 | 100.46 | 5 | 云南景谷 | 31 |
2014-10-11 06:05:12 | 4.7 | 23.50 | 100.40 | 8 | 云南景谷 | 34.2 |
2014-12-05 18:43:44 | 5.8 | 23.31 | 100.50 | 9 | 云南景谷 | 32.7 |
2014-12-06 10:20:00 | 5.9 | 23.32 | 100.50 | 10 | 云南景谷 | 32.7 |
2014-12-07 09:23:04 | 4.7 | 23.30 | 100.50 | 15.4 | 云南景谷 | 33.2 |
2015-11-13 16:55:06 | 4.6 | 23.33 | 100.52 | 5.3 | 云南景谷 | 29.4 |
2018-09-08 02:31:29 | 5.9 | 23.28 | 101.53 | 11 | 云南墨江 | 85 |
表1 地震的基本信息
Table 1 General information of earthquakes
发震时刻(UTC) | 震级 /M | 北纬 /(°) | 东经 /(°) | 深度 /km | 参考位置 | 震中距 /km |
---|---|---|---|---|---|---|
2014-10-07 13:49:39 | 6.6 | 23.39 | 100.46 | 5 | 云南景谷 | 31 |
2014-10-11 06:05:12 | 4.7 | 23.50 | 100.40 | 8 | 云南景谷 | 34.2 |
2014-12-05 18:43:44 | 5.8 | 23.31 | 100.50 | 9 | 云南景谷 | 32.7 |
2014-12-06 10:20:00 | 5.9 | 23.32 | 100.50 | 10 | 云南景谷 | 32.7 |
2014-12-07 09:23:04 | 4.7 | 23.30 | 100.50 | 15.4 | 云南景谷 | 33.2 |
2015-11-13 16:55:06 | 4.6 | 23.33 | 100.52 | 5.3 | 云南景谷 | 29.4 |
2018-09-08 02:31:29 | 5.9 | 23.28 | 101.53 | 11 | 云南墨江 | 85 |
图 3 2015年11月13日景谷M4.6地震发生前后的地震波及电磁波变化时间序列 由上到下分别为地震波分量BHE、 BHN、 BHZ和电磁场分量Ex、 Ey、 Hx、 Hy、 Hz, 黑色虚线表示地震发生的时刻
Fig. 3 Seismic and electromagnetic signals observed at Jinggu Station before and after Jinggu M4.6 earthquake on November 13, 2015.
图 4 各地震发生前后的地震波及电磁波变化时间序列 空白表示数据缺失, 黑色虚线表示地震发生时刻。 其中图a和f进行了GPS校正
Fig. 4 Seismic and electromagnetic signals observed at Jinggu Station before and after each earthquake.
图 5 2018年9月8日墨江M4.1地震发生后的地震波及电磁波变化时间序列
Fig. 5 Seismic and electromagnetic signals observed at Jinggu Station after the Mojiang M4.1 earthquake on September 8, 2018.
震级/M | Ex | Ey | Hx | Hy | Hz |
---|---|---|---|---|---|
6.6 | 210.490 5 | 0 | 49.553 44 | 110.139 6 | 2 091.949 |
4.6 | 6.349 204 | 2.023 256 | 1.173 469 | 2.151 22 | 15.351 94 |
振幅比值 | 33.152 27 | 0 | 42.228 15 | 51.198 69 | 136.266 1 |
能量比值 | 1 099.073 | 0 | 1 783.217 | 2 621.306 | 18 568.45 |
表2 2次地震振幅增强对比值
Table 2 Comparison of enhanced amplitude between the M6.6 and M4.6 earthquakes
震级/M | Ex | Ey | Hx | Hy | Hz |
---|---|---|---|---|---|
6.6 | 210.490 5 | 0 | 49.553 44 | 110.139 6 | 2 091.949 |
4.6 | 6.349 204 | 2.023 256 | 1.173 469 | 2.151 22 | 15.351 94 |
振幅比值 | 33.152 27 | 0 | 42.228 15 | 51.198 69 | 136.266 1 |
能量比值 | 1 099.073 | 0 | 1 783.217 | 2 621.306 | 18 568.45 |
地震名称 | 台站及震中距 |
---|---|
景谷5.9级地震 | 景谷台(32.7km)、 牟定台(254km)、 大理台(272km) |
景谷6.6级地震 | 景谷台(32km)、 牟定台(242km)、 大理台(262km)、 新平台(175km) |
表3 地震及台站信息
Table 3 Information of earthquake and stations
地震名称 | 台站及震中距 |
---|---|
景谷5.9级地震 | 景谷台(32.7km)、 牟定台(254km)、 大理台(272km) |
景谷6.6级地震 | 景谷台(32km)、 牟定台(242km)、 大理台(262km)、 新平台(175km) |
[1] | 高永新. 2010. 地震电磁场: 基于动电效应的波场模拟[D]. 哈尔滨: 哈尔滨工业大学. |
GAO Yong-xin. 2010. Simulation of earthquake-induced electromagnetic wave field due to the electrokinetic effect[D]. Harbin Institute of Technology, Harbin (in Chinese). | |
[2] | 江鹏. 2021. 磁棒旋转诱导的同震磁场研究[D]. 合肥: 合肥工业大学. |
JIANG Peng. 2021. Study on coseismic magnetic field induced by rotation of coil-type magnetometer[D]. Hefei University of Technology, Hefei (in Chinese). | |
[3] | 汤吉, 詹艳, 王立凤, 等. 2008. 5月12日汶川8.0级地震强余震观测的电磁同震效应[J]. 地震地质, 30(3): 739—745. |
TANG Ji, ZHAN Yan, WANG Li-feng, et al. 2008. Coseismic signal associated with aftershock of the MS8.0 Wenchuan earthquake[J]. Seismology and Geology, 30(3): 739—748 (in Chinese). | |
[4] | 汤吉, 詹艳, 王立凤, 等. 2010. 汶川地震强余震的电磁同震效应[J]. 地球物理学报, 53(3): 526—534. |
TANG Ji, ZHAN Yan, WANG Li-feng, et al. 2010. Electromagnetic coseismic effect associated with aftershock of Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics, 53(3): 526—534 (in Chinese). | |
[5] | 王立凤, 朱学会, 赵国泽, 等. 2016. GMS -07电磁观测系统测量注意事项及故障检测[J]. 物探与化探, 40(2): 385—389. |
WANG Li-feng, ZHU Xue-hui, ZHAO Guo-ze, et al. 2016. The operation cautions and troubleshooting of the GMS -07 system in MT survey[J]. Geophysical and Geochemical Exploration, 40(2): 385—389 (in Chinese). | |
[6] | 谢小碧. 1999. 地震波在盆地中的传播特点及其对盆地中震害的影响[J]. 山西地震, 96(1): 1—5. |
XIE Xiao-bi. 1999. Propagation characters of seismic wave in basin and its impact on earthquake disaster[J]Earthquake Research in Shanxi, 96(1): 1—5 (in Chinese). | |
[7] |
徐光晶, 汤吉, 陈小斌, 等. 2009. 云南宁洱 MS6.4 地震震后电磁效应[J]. 地震地质, 31(2): 305—312. doi: 10.3969/j.issn.0253-4967.2009.02.011.
DOI |
XU Guang-jing, TANG Ji, CHEN Xiao-bin, et al. 2009. Electromagnetic effects associated with aftershocks of the MS6.4 Ning’er earthquake[J]. Seismology and Geology, 31(2): 305—312 (in Chinese). | |
[8] | 赵国泽, 陆建勋. 2003. 利用人工源超低频电磁波监测地震的试验与分析[J]. 中国工程科学, 5(10): 27—33. |
ZHAO Guo-ze, LU Jian-xun. 2003. Monitoring and analysis of earthquake phenomena by artificial SLF waves[J]. Engineering Science, 5(10): 27—33 (in Chinese).
DOI URL |
|
[9] | 赵国泽, 王立凤, 汤吉, 等. 2010. 地震监测人工源极低频电磁技术(CSELF)新试验[J]. 地球物理学报, 53(3): 479—486. |
ZHAO Guo-ze, WANG Li-feng, TANG Ji, et al. 2010. New experiments of CSELF electromagnetic method for earthquake monitoring[J]. Chinese Journal of Geophysics, 53(3): 479—486 (in Chinese). | |
[10] |
赵国泽, 王立凤, 詹艳, 等. 2012. 地震预测人工源极低频电磁新技术(CSELF)和第一个观测台网[J]. 地震地质, 34(4): 576—585. doi: 10.3969/j.issn.0253-4967.2012.04.004.
DOI |
ZHAO Guo-ze, WANG Li-feng, ZHAN Yan, et al. 2012. A new electromagnetic technique for earthquake monitoring-CSELF and the first observational network[J]. Seismology and Geology, 34(4): 576—585 (in Chinese). | |
[11] |
Gao Y X, Zhao G Z, Chong J J, et al. 2020. Coseismic electric and magnetic signals observed during 2017 Jiuzhaigou MW6.5 earthquake and explained by electrokinetics and magnetometer rotation[J]. Geophysical Journal International, 223(2): 1130—1143.
DOI URL |
[12] |
Grossman A, Morlet J. 1984. Decomposition of Hardy functions into square integrable wavelets of constant shape[J]. SIAM Journal on Mathematical Analysis, 15(4): 723—736.
DOI URL |
[13] |
Hayakawa M, Hobara Y. 2010. Current status of seismo-electromagnetics for short-term earthquake prediction[J]. Geomatics, Natural Hazards and Risk, 1(2): 115—155.
DOI URL |
[14] |
Honkura Y, Isikara A M, Oshiman N. 2000. Preliminary results of multidisciplinary observations before, during and after the Kocaeli(Izmit)earthquake in the western part of the north Anatolian fault zone[J]. Earth, Planets and Space, 52(4): 293—298.
DOI URL |
[15] |
Honkura Y, Satoh H, Ujihara N. 2004. Seismic dynamo effects associated with the M7.1 earthquake of 26 May 2003 off Miyagi Prefecture and the M6.4 earthquake of 26 July 2003 in northern Miyagi Prefecture, NE Japan[J]. Earth, Planets and Space, 56: 109—114.
DOI URL |
[16] | Huang Q, Ren H, Zhang D, et al. 2015. Medium effect on the characteristics of the coupled seismic and electromagnetic signals[J]. Proceedings of the Japan Academy, 91(1): 17—24. |
[17] |
Johnston M, Mueller R. 1987. Seismomagnetic observation with the July 8, 1986, ML5.9 North Palm Springs earthquake[J]. Science, 237(4819): 1201—1203.
PMID |
[18] |
Johnston M, Mueller R, Sasai Y. 1994. Magnetic field observations in the near-field of the 28 June 1992 MW7.3 Landers, California, earthquake[J]. Bulletin of the Seismological Society of America, 84(3): 792—798.
DOI URL |
[19] | Johnston M, Sasai Y, Egbert G, et al. 2006. Seismomagnetic effects from the long-awaited 28 September 2004 M6.0 Parkfield earthquake[J]. Bulletin of the Seismological Society of America, 96(4B): 206—220. |
[20] |
Kumar P, Rawat V S, Patro P K, et al. 2020. Assessment and recognition of pre- and co-seismic electromagnetic signatures from magnetotelluric data: A case study from Koyna-Warna seismoactive region, India[J]. Acta Geophysica, 69:1—15.
DOI URL |
[21] | Matsushima M, Honkura Y, Oshiman N. et al. 2002. Seismo-electromagnetic effect associated with the İzmit earthquake and its aftershocks [J]. Bulletin of the Seismological Society of America, 92(1): 350—360. |
[22] | Morlet J, Arens G, Fourgeau E, et al. 1982. Wave propagation and sampling theory(Part Ⅱ): Sampling theory and complex waves[J]. Geophysics, 47(2): 801—813. |
[23] |
Okubo K, Takeuchi N, Utsugi M, et al. 2011. Direct magnetic signals from earthquake rupturing: Iwate-Miyagi earthquake of M7.2, Japan[J]. Earth and Planetary Science Letters, 35: 65—72.
DOI URL |
[24] | Ren H, Wen J, Huang Q, et al. 2015. Electrokinetic effect combined with surface-charge assumption: A possible generation mechanism of coseismic EM signals[J]. Geophysical Journal International, 200(2): 835—848. |
[25] |
Sun Y C, Uyeshima M, Ren H X, et al. 2019. Numerical simulations to explain the coseismic electromagnetic signals: A case study for a M5.4 aftershock of the 2016 Kumamoto earthquake[J]. Earth, Planets and Space, 71(1): 1—24.
DOI URL |
[1] | 董泽义, 汤吉, 赵国泽, 陈小斌, 崔腾发, 韩冰, 姜峰, 王立凤. 首都圈极低频电磁台网区地下电性结构探测[J]. 地震地质, 2022, 44(3): 649-668. |
[2] | 谈洪波, 申重阳, 玄松柏, 吴桂桔, 杨光亮, 汪健. 鲁甸MS6.5地震孕育环境的重力学分析[J]. 地震地质, 2017, 39(2): 356-373. |
[3] | 韩冰, 汤吉, 赵国泽, 毕亚新, 王立凤, 程远志. 小波极大值方法及其在电磁异常信号提取中的应用[J]. 地震地质, 2015, 37(3): 765-779. |
[4] | 解滔, 郑晓东, 康春丽, 马未宇, 卢军. 2013年4月20日芦山MS7.0地震前热红外亮温异常分析[J]. 地震地质, 2015, 37(1): 149-161. |
[5] | 宋维琪, 赵万金, 吴华, 冯磊. 利用多分辨率小波网络进行地震资料反演[J]. 地震地质, 2005, 27(1): 98-104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||