地震地质 ›› 2022, Vol. 44 ›› Issue (3): 718-735.DOI: 10.3969/j.issn.0253-4967.2022.03.010
收稿日期:
2021-05-13
修回日期:
2021-12-14
出版日期:
2022-06-20
发布日期:
2022-08-02
作者简介:
章鑫, 男, 1987年生, 2016年于中国地震局兰州地震研究所获固体地球物理学专业硕士学位, 副研究员, 主要从事地球电磁学研究, E-mail: zxdqwl@163.com。
基金资助:
ZHANG Xin1)(), FAN Ye2), YE Qing2), QIAN Yin-ping1)
Received:
2021-05-13
Revised:
2021-12-14
Online:
2022-06-20
Published:
2022-08-02
摘要:
高压直流输电(HVDC)换流站的入地电流造成了地电场观测中的显著干扰, 通常在入地极附近数百千米范围内会引起很大的阶变。 但判断阶变来源于某个换流站的入地电流是较为困难的, 一般需要借助高压直流线路对地磁场的影响数据来识别。 文中以海驻线(海南藏族自治州—驻马店)、 扎青线(扎鲁特—青州)和宝德线(宝鸡—德阳)为例, 获取了3次典型干扰的响应数据, 对3条线路周边58个地电场台站的数据展开分析, 并使用山东大山台极低频数据作为对比案例。 首先, 解释了不同位置的台站对入地电流有不同的响应方式, 即台站分别位于1个入地极附近、 两极中间以及两极之间靠近一侧入地极这3种情况时, 对应的3类响应分别为台阶状阶变、 脉冲状响应和脉冲+半台阶状响应。 然后, 采用日变化幅度对高压直流输电干扰的阶变量进行校正, 基于多台的电位差具有方向性的原理对入地极进行定位, 判断入地电流的来源和换流站的大致位置。 定位结果对海驻线、 扎青线和宝德线的入地极位置都有较好的指向, 结合多台的阶变合成矢量能够判断换流站的位置; 此外, 经日变化校正后的阶变幅度能显示入地极所在, 可对定位结果进行补充。 进一步建立入地电流的定量扩散电流模型, 展示大电流入地时电位差的分布规律, 判断入地电流的干扰范围和台站响应的阶变量。 基于58个地电场台站和1个极低频台站的观测数据, 文中给出了入地电流对周边地电场台站干扰的特点, 可将其应用于实际观测中对HVDC干扰的数据校正。
中图分类号:
章鑫, 范晔, 叶青, 钱银苹. HVDC入地电流对地电场的影响规律及入地极定位[J]. 地震地质, 2022, 44(3): 718-735.
ZHANG Xin, FAN Ye, YE Qing, QIAN Yin-ping. THE INFLUENCE OF HVDC TRANSMISSION ON GEOELECTRIC FIELD AND LOCATING THE GROUNDING POLES[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(3): 718-735.
图 1 高压直流线附近的台站分布和构造要素 a ±800kV海驻线的台站分布; b 宝德线入地极的位置和台站分布; c 扎青线入地极的位置和台站分布。 红色三角为被干扰台站, 蓝色为区域内其他台站, 黑色箭头表示输电端和受电端的方向
Fig. 1 Distribution of stations and faults near HVDC lines. The red triangle represents the disturbed stations, and the blue ones represent other stations in the area.
海驻线 台站 | SEX /mV·km-1 | SEY /mV·km-1 | 与入地极的距离 /km | 宝德线、 扎青线台站 | SEX /mV·km-1 | SEY /mV·km-1 | 与入地极的距离 /km |
---|---|---|---|---|---|---|---|
蒙城 | 9.153 7 | 62.681 3 | 203 | 成都 | -6.153 3 | -20.881 7 | 63 |
嘉山 | -2.528 7 | 6.031 8 | 374 | 江油 | 7.305 5 | 10.827 2 | 80 |
南京 | -1.68 | 14.5 | 499 | 固原 | -2.585 | 0.495 | 175 |
新沂 | 0.106 7 | 2.473 3 | 397 | 乾陵 | -18.646 7 | -24.438 3 | 93 |
高邮 | 0.071 7 | 1.561 7 | 485 | 宝鸡 | -4.146 7 | -8.598 3 | 55 |
海安 | -0.258 3 | 0.54 | 583 | 周至 | -0.512 8 | -2.419 3 | 110 |
郯城 | 8.47 | 3.061 7 | 425 | 凤翔 | -197.721 7 | -32.876 7 | 88 |
菏泽 | 8.636 7 | 2.538 3 | 223 | 延庆 | 2.19 | -0.42 | 475 |
大山 | 0.488 3 | 0.995 | 605 | 静海 | 2.547 | -1.431 | 289 |
邹城 | 6.195 | 2.738 3 | 340 | 徐庄子 | 1.491 | -0.255 | 247 |
洛阳 | -13.948 3 | -7.683 3 | 219 | 宝坻 | 4.218 | -1.78 | 348 |
周口 | 17.44 | 4.671 7 | 51 | 昌黎 | 5.748 | -3.697 | 341 |
应城 | -21.27 | -11.71 | 270 | 大柏舍 | 2.29 | -1.27 | 338 |
仙女山 | -1.58 | -2.08 | 748 | 兴济 | 0.78 | -2.945 | 247 |
红池坝 | -0.28 | -1.57 | 488 | 肥乡 | 1.252 | -0.865 | 316 |
乾陵 | 2.87 | -2.76 | 579 | 新城子 | 10.47 | -4.35 | 348 |
合阳 | -1.59 | -0.52 | 433 | 锦州 | 13.078 3 | -3.535 | 297 |
凤翔 | -4.65 | -1.79 | 646 | 阜新 | 75.128 5 | -13.203 | 231 |
平凉 | -3.14 | -9.25 | 499 | 三岗 | -0.458 3 | -3.648 3 | 373 |
山丹 | -1.14 | -1.02 | 309 | 四平 | 3.591 7 | -1.22 | 354 |
武威 | -1.09 | -0.64 | 245 | 榆树 | 1.67 | -2.341 7 | 517 |
松山1 | -1.53 | -1.39 | 263 | 德都 | -4.44 | -2.19 | 673 |
松山3 | -1.03 | -0.78 | 264 | 林甸 | -1.63 | -1.2 | 502 |
古丰 | -9.67 | -3.80 | 234 | 王奎 | -0.83 | -1.36 | 553 |
黄羊 | 1.44 | 0.68 | 246 | 肇东 | -0.44 | -3.07 | 498 |
玛曲 | 0.83 | -1.29 | 239 | 通河 | 1.72 | 15.85 | 650 |
都兰 | -1.99 | 2.67 | 254 | 安丘 | -3.008 3 | 3.523 3 | 75 |
大武 | 34.49 | 26.45 | 179 | 菏泽 | -0.976 7 | -0.14 | 328 |
金银滩 | -5.30 | 0.38 | 110 | 大山 | 0.631 7 | -0.07 | 173 |
表1 台站信息及阶变量计算结果
Table 1 Station information and partial results of step changes
海驻线 台站 | SEX /mV·km-1 | SEY /mV·km-1 | 与入地极的距离 /km | 宝德线、 扎青线台站 | SEX /mV·km-1 | SEY /mV·km-1 | 与入地极的距离 /km |
---|---|---|---|---|---|---|---|
蒙城 | 9.153 7 | 62.681 3 | 203 | 成都 | -6.153 3 | -20.881 7 | 63 |
嘉山 | -2.528 7 | 6.031 8 | 374 | 江油 | 7.305 5 | 10.827 2 | 80 |
南京 | -1.68 | 14.5 | 499 | 固原 | -2.585 | 0.495 | 175 |
新沂 | 0.106 7 | 2.473 3 | 397 | 乾陵 | -18.646 7 | -24.438 3 | 93 |
高邮 | 0.071 7 | 1.561 7 | 485 | 宝鸡 | -4.146 7 | -8.598 3 | 55 |
海安 | -0.258 3 | 0.54 | 583 | 周至 | -0.512 8 | -2.419 3 | 110 |
郯城 | 8.47 | 3.061 7 | 425 | 凤翔 | -197.721 7 | -32.876 7 | 88 |
菏泽 | 8.636 7 | 2.538 3 | 223 | 延庆 | 2.19 | -0.42 | 475 |
大山 | 0.488 3 | 0.995 | 605 | 静海 | 2.547 | -1.431 | 289 |
邹城 | 6.195 | 2.738 3 | 340 | 徐庄子 | 1.491 | -0.255 | 247 |
洛阳 | -13.948 3 | -7.683 3 | 219 | 宝坻 | 4.218 | -1.78 | 348 |
周口 | 17.44 | 4.671 7 | 51 | 昌黎 | 5.748 | -3.697 | 341 |
应城 | -21.27 | -11.71 | 270 | 大柏舍 | 2.29 | -1.27 | 338 |
仙女山 | -1.58 | -2.08 | 748 | 兴济 | 0.78 | -2.945 | 247 |
红池坝 | -0.28 | -1.57 | 488 | 肥乡 | 1.252 | -0.865 | 316 |
乾陵 | 2.87 | -2.76 | 579 | 新城子 | 10.47 | -4.35 | 348 |
合阳 | -1.59 | -0.52 | 433 | 锦州 | 13.078 3 | -3.535 | 297 |
凤翔 | -4.65 | -1.79 | 646 | 阜新 | 75.128 5 | -13.203 | 231 |
平凉 | -3.14 | -9.25 | 499 | 三岗 | -0.458 3 | -3.648 3 | 373 |
山丹 | -1.14 | -1.02 | 309 | 四平 | 3.591 7 | -1.22 | 354 |
武威 | -1.09 | -0.64 | 245 | 榆树 | 1.67 | -2.341 7 | 517 |
松山1 | -1.53 | -1.39 | 263 | 德都 | -4.44 | -2.19 | 673 |
松山3 | -1.03 | -0.78 | 264 | 林甸 | -1.63 | -1.2 | 502 |
古丰 | -9.67 | -3.80 | 234 | 王奎 | -0.83 | -1.36 | 553 |
黄羊 | 1.44 | 0.68 | 246 | 肇东 | -0.44 | -3.07 | 498 |
玛曲 | 0.83 | -1.29 | 239 | 通河 | 1.72 | 15.85 | 650 |
都兰 | -1.99 | 2.67 | 254 | 安丘 | -3.008 3 | 3.523 3 | 75 |
大武 | 34.49 | 26.45 | 179 | 菏泽 | -0.976 7 | -0.14 | 328 |
金银滩 | -5.30 | 0.38 | 110 | 大山 | 0.631 7 | -0.07 | 173 |
图 2 不同位置的台站受到海驻线影响的结果 a 代表性响应台站及其位置示意图; b—d 都兰台、 凤翔台和大山台受影响的观测曲线; 图b为第1类响应, 只受到一侧极的影响; 图c为第2类响应, 同时受到两侧极的影响且影响几乎相当; 图d为第3类响应, 受到两侧极的影响且以一侧极为主。 干扰发生的时间为2020年7月11日和2020年4月23日
Fig. 2 Results of different stations that are affected by Hainanzhou-Zhumadian line.
图 3 大山台地电场观测数据与极低频观测数据对高压直流的响应比较 a 地电场EX分量; b 地电场EY分量; c大山台极低频电场的观测值; d、 f D1、 D2时段的放大图; e、 g E时段的放大图。LEX表示极低频电场的EX分量, LEY表示极低频电场的EY分量; 图 3d—g 表示截取典型响应的台阶(或脉冲)时段。 D1和D2 表示2个独立的干扰阶段, E表示扰动时段同时存在于地电场观测与极低频观测中
Fig. 3 Comparison of the responses of geoelectric field data and extremely low frequency data to HVDC at Dashan station.
图 4 按照距离排列的驻马店入地极附近台站EX分量的阶变情况(a)及阶变延迟信息(b、 c)
Fig. 4 The EX order variables that are arranged by distance of stations near the Zhumadian ground electrode(a)and step delay information(b, c).
图 5 驻马店入地极附近台站的阶变量、 日变化幅度(a)及两者比值(b)
Fig. 5 The step changes, daily variation range, and their ratio of stations near the Zhumadian grounding electrode.
图 6 海南藏族自治州入地极附近台站的阶变量、 日变化幅度(a)及两者比值(b)
Fig. 6 The step changes, daily variation range, and their ratio of stations near the Hainanzhou grounding electrode.
图 7 高压直流的电位方向性响应及电位方向差异定位原理 a 南京台短极距对三常线(三峡—常州, ±500kV)2020年5月9日的阶变; b 南京台短极距阶变的方向性响应;c 基于2个虚拟台站的电位方向差异的定位原理示意图
Fig. 7 Potential directional response of HVDC and the principle of locating by potential direction difference of HVDC.
图 11 理想导电状况下的电位分布及电位差衰减 a 2个入地极附近的电位取对数(log10)的分布, 单位为mV; b、 c 对图a中沿y轴求电位差的结果, 在-800~-100km范围每隔100km取1条线, 单位为mV/km; d、 e 对图a中沿y轴求电位差的结果, 在-20~50km范围每隔10km取1条线, 除通 原点的线, 单位为mV/km。入地电流强度为4 000A, 电阻率为150Ω·m, 埋深100m
Fig. 11 Potential distribution and difference attenuation under ideal conduction condition.
[1] |
方炜, 晏锐, 邵辉成, 等. 2012. 高压直流输电对地磁场观测的影响[J]. 地震地质, 34(1): 138—144. doi: 10.3969/j.issn.0253-4967.2012.01.013.
DOI |
FANG Wei, YAN Rui, SHAO Hui-cheng, et al. 2012. The impact of HVDC on geomagnetic field observation[J]. Seismology and Geology, 34(1): 138—144 (in Chinese). | |
[2] | 葛小宁, 刘连光, 陈剑, 等. 2017. 轨道电路的地磁感应电流监测数据分析[J]. 科学技术与工程, 17(12): 103—107. |
GE Xiao-ning, LIU Lian-guang, CHEN Jian, et al. 2017. Analysis of the geomagnetically induced current monitored in the track circuit[J]. Science Technology and Engineering, 17(12): 103—107 (in Chinese). | |
[3] | 耿山, 樊艳芳, 巩晓玲, 等. 2019. 特高压直流接地极周边地表电位分布计算与敏感性参数研究[J]. 高压电器, 55(3): 163—169. |
GENG Shan, FAN Yan-fang, GONG Xiao-ling, et al. 2019. Calculation of earth surface potential around UHVDC grounding electrode and analysis on sensitive parameters[J]. High Voltage Apparatus, 55(3): 163—169 (in Chinese). | |
[4] | 郭名文, 樊艳芳, 耿山, 等. 2019. 特高压直流接地极周边断裂结构对地表电位分布的影响研究[J]. 电力系统保护与控制, 47(2): 79—85. |
GUO Ming-wen, FAN Yan-fang, GENG Shan, et al. 2019. Study on the effect of fracture structure adjacent to ground electrodes of UHVDC power transmission lines on earth surface potential distribution[J]. Power System Protection and Control, 47(2): 79—85 (in Chinese). | |
[5] | 黄清华, 林玉峰. 2010. 地震电信号选择性数值模拟及可能影响因素[J]. 地球物理学报, 53(3): 535—543. |
HUANG Qing-hua, LIN Yu-feng. 2010. Numerical simulation of selectivity of seismic electric signal and its possible influences[J]. Chinese Journal of Geophysics, 53(3): 535—543 (in Chinese). | |
[6] | 蒋延林, 张秀霞, 杨冬梅, 等. 2014. 高压直流输电对地磁观测影响的特征分析[J]. 地震, 34(3): 132—139. |
JIANG Yan-lin, ZHANG Xiu-xia, YANG Dong-mei, et al. 2014. Influence characteristics of high voltage direct current transmission on geomagnetic observation[J]. Earthquake, 34(3): 132—139 (in Chinese). | |
[7] | 李泓志. 2010. 直流接地极接地性能及入地电流对变压器影响的研究[D]. 北京: 华北电力大学: 66—70. |
LI Hong-zhi. 2010. Research on performance of DC ground electrode and influence on power transformer by the earthing current[D]. North China Electric Power University, Beijing: 66—70 (in Chinese). | |
[8] | 刘连光, 葛小宁, 王开让, 等. 2016. 地磁暴侵害中国高铁和油气管道的观测研究[J]. 中国科学: 技术科学, 46(3): 268—275. |
LIU Lian-guang, GE Xiao-ning, WANG Kai-rang, et al. 2016. Observation studies of encroachment by geomagnetic storms on high-speed railways and oil-and-gas pipelines in China[J]. Scientia Sinica Technologica, 46(3): 268—275 (in Chinese).
DOI URL |
|
[9] | 刘曲, 李立浧, 郑健超. 2007. 复合土壤模型下HVDC系统单极大地运行时的电流分布[J]. 中国电机工程学报, 27(36): 8—13. |
LIU Qu, LI Li-cheng, ZHENG Jian-chao. 2007. DC currents distribution in HVDC systems of monopolar operation with ground return in complex soil structure[J]. Proceedings of the CSEE, 27(36): 8—13 (in Chinese). | |
[10] | 马钦忠, 李伟, 张继红, 等. 2014. 与大电流信号有关的华北东部地区地电场空间变化特征的研究[J]. 地球物理学报, 57(2): 518—530. |
MA Qin-zhong, LI Wei, ZHANG Ji-hong, et al. 2014. Study on the spatial variation characteristics of the geoelectric field signals recorded at the stations in the east Huabei area when a great current is injected[J]. Chinese Journal of Geophysics, 57(2): 518—530 (in Chinese). | |
[11] | 马钦忠, 李伟, 赵文舟, 等. 2017. 人工源地电场空间变化区域性特征[J]. 地震学报, 39(4): 455—468. |
MA Qin-zhong, LI Wei, ZHAO Wen-zhou, et al. 2017. Regional characteristics of artificial source geoelectric field spatial variations[J]. Acta Seismologica Sinica, 39(4): 455—468 (in Chinese). | |
[12] | 邱颖, 席继楼. 2009. 小波方法在地电场干扰处理中的分析研究[J]. 地震, 29(2): 57—63. |
QIU Ying, XI Ji-lou. 2009. Research on removing noises in geoelectric field observation using wavelet transform[J]. Earthquake, 29(2): 57—63 (in Chinese). | |
[13] | 任志超. 2012. 直流系统接地极电流场的分布特性及其对交流电网影响的研究[D]. 重庆: 西南交通大学: 27—34. |
REN Zhi-chao. 2012. Distribution characteristics of DC system grounding electrode current field and its effect on AC power grid[D]. Southwest Jiaotong University, Chongqing: 27—34 (in Chinese). | |
[14] | 唐波, 张小武, 葛光祖, 等. 2013. 特高压直流输电线路与接地极对地电场观测的干扰[J]. 高电压技术, 39(12): 2951—2959. |
TANG Bo, ZHANG Xiao-wu, GE Guang-zu, et al. 2013. Interference on geoelectric field observation from UHVDC power lines and its ground electrode[J]. High Voltage Engineering, 39(12): 2951—2959 (in Chinese). | |
[15] | 魏敏敏, 曹保江, 任志超, 等. 2012. 地形结构及参数对特高压直流地电流散流特性的影响分析[J]. 高电压技术, 38(2): 414—420. |
WEI Min-min, CAO Bao-jiang, REN Zhi-chao, et al. 2012. Influence of terrain structure and parameter on the divergence character of UHVDC grounding current[J]. High Voltage Engineering, 38(2): 414—420 (in Chinese). | |
[16] | 席继楼. 2019. 地电场观测方法与观测技术研究[J]. 地震地磁观测与研究, 40(2): 1—20. |
XI Ji-lou. 2019. A review of geoelectric field observation methods and techniques[J]. Seismological and Geomagnetic Observation and Research, 40(2): 1—20 (in Chinese). | |
[17] |
章鑫, 杜学彬. 2020. 郯庐断裂带南段对近地表大地电流的分异性[J]. 地震地质, 42(4): 909—922. doi: 10.3969/j.issn.0253-4967.2020.04.009.
DOI |
ZHANG Xin, DU Xue-bin. 2020. Differentiation direction of telluric currents in the southern section of the Tanlu fault zone[J]. Seismology and Geology, 42(4): 909—922 (in Chinese). | |
[18] | 张宇, 张兴国, 王兰炜, 等. 2016. 新型地电阻率交流观测系统研究及江宁台观测试验[J]. 地震学报, 38(5): 807—810. |
ZHANG Yu, ZHANG Xing-guo, WANG Lan-wei, et al. 2016. A new AC geo-electrical resistivity observation system and experimental observation in Jiangning seismic station[J]. Acta Seismologica Sinica, 38(5): 807—810 (in Chinese). | |
[19] | 赵文舟, 马钦忠, 李伟, 等. 2022. 人工源地电场“选择性”现象研究[J]. 地球物理学报, 65(5): 1742—1752. |
ZHAO Wen-zhou, MA Qin-zhong, LI Wei, et al. 2022. Selectivity phenomenon of artificial-source geoelectric field[J]. Chinese Journal of Geophysics, 65(5): 1742—1752 (in Chinese). | |
[20] |
Gao Y X, Chen X F, Hu H S, et al. 2014. Induced electromagnetic field by seismic waves in earth’s magnetic field[J]. Journal of Geophysical Research: Solid Earth, 119(7): 5651—5685.
DOI URL |
[21] |
Ren H X, Huang Q H, Chen X F. 2018. Quantitative understanding on the amplitude decay characteristic of the evanescent electromagnetic waves generated by seismo-electric conversion[J]. Pure and Applied Geophysics, 175(8): 2853—2879. doi: 10.1007/s00024-018-1823-z.
DOI URL |
[22] |
Sarlis N, Lazaridou M, Kapiris P, et al. 1999. Numerical model of the selectivity effect and the ΔV/L criterion[J]. Geophysical Research Letters, 26(21): 3245—3248.
DOI URL |
[1] | 池海江, 温佳. 怀来极低频电磁观测监控与管理方法的实现[J]. 地震地质, 2022, 44(3): 821-830. |
[2] | 韩冰, 汤吉, 赵国泽, 王立凤, 董泽义, 范晔, 孙贵成. 极低频台站同震电磁信号特征分析[J]. 地震地质, 2022, 44(3): 753-770. |
[3] | 范晔, 汤吉, 缪杰, 叶青, 崔腾发, 董泽义, 韩冰, 孙贵成. 2020年7月12日唐山古冶5.1级地震的电磁现象[J]. 地震地质, 2022, 44(3): 669-685. |
[4] | 董泽义, 汤吉, 赵国泽, 陈小斌, 崔腾发, 韩冰, 姜峰, 王立凤. 首都圈极低频电磁台网区地下电性结构探测[J]. 地震地质, 2022, 44(3): 649-668. |
[5] | 张继红, 赵国泽, 董泽义, 王立凤, 韩冰, 王庆林, 唐廷梅, 王梅. 郯庐断裂带安丘、莒县电磁台地壳电性结构研究[J]. 地震地质, 2019, 41(5): 1239-1253. |
[6] | 王同利, 胡乐银, 崔博闻, 宋艳茹. 北京城市轨道交通对地电场观测的干扰影响[J]. 地震地质, 2013, 35(4): 887-893. |
[7] | 赵国泽, 王立凤, 詹艳, 汤吉, 肖骑彬, 陈小斌, 王继军, 蔡军涛, 汪晓, 杨静. 地震预测人工源极低频电磁新技术(CSELF)和第一个观测台网[J]. 地震地质, 2012, (4): 576-585. |
[8] | 方炜, 晏锐, 邵辉成, 张国强. 高压直流输电对地磁场观测的影响[J]. 地震地质, 2012, 34(1): 138-144. |
[9] | 王兰炜, 赵家骝, 张世中. SLF/ELF电磁接收机研究及观测试验[J]. 地震地质, 2010, 32(3): 482-491. |
[10] | 方炜, 张国强, 邵辉成. 高压直流输电对地电场观测的影响[J]. 地震地质, 2010, 32(3): 434-441. |
[11] | 王祥书. 大地电阻率在超低频/极低频电波传播技术中的作用[J]. 地震地质, 2001, 23(4): 574-580. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||