地震地质 ›› 2022, Vol. 44 ›› Issue (3): 604-624.DOI: 10.3969/j.issn.0253-4967.2022.03.004
马小军1,2)(), 吴庆举1),*(), 潘佳铁1), 钟世军3), 徐荟1)
收稿日期:
2021-05-31
修回日期:
2021-11-03
出版日期:
2022-06-20
发布日期:
2022-08-02
通讯作者:
吴庆举
作者简介:
马小军, 男, 1982年生, 现为中国地震局地球物理研究所固体地球物理专业在读博士研究生, 高级工程师, 主要从事地震背景噪声成像方面的研究, E-mail: maxiaojun2018@gmail.com。
基金资助:
MA Xiao-jun1,2)(), WU Qing-ju1),*(), PAN Jia-tie1), ZHONG Shi-jun3), XU Hui1)
Received:
2021-05-31
Revised:
2021-11-03
Online:
2022-06-20
Published:
2022-08-02
Contact:
WU Qing-ju
摘要:
文中利用布设在青藏高原东北缘及相邻区域的密集台阵1年的连续波形得到了背景噪声面波经验格林函数, 采用多通道互相关噪声面波程函成像方法, 反演得到了8~40s周期的相速度分布。与天然地震面波程函成像结果对比表明所得结果是可靠的, 具有高精度和高分辨率的特点; 与基于频时分析提取频散的传统程函成像方法对比, 文中的结果能够降低多路径散射面波和低信噪比带来的误差, 提高了反演结果的稳定性。研究结果显示, 河套-吉兰泰盆地下地壳—上地幔存在弱低速体, 地幔高温软弱物质的侵入可能造成了下地壳—上地幔的低速特征; 松潘-甘孜地块东北部下地壳的低速层可能暗示存在部分熔融, 结合其他结果推测可能不存在地壳管道流, 地幔软流圈物质的上涌可能是造成下地壳低速异常的原因; 祁连山西部的下地壳存在显著低速层, 南、 北块体挤压下的地壳缩短、 增厚和解耦应当形成了低速层。
中图分类号:
马小军, 吴庆举, 潘佳铁, 钟世军, 徐荟. 基于多通道互相关的青藏高原东北缘背景噪声程函层析成像[J]. 地震地质, 2022, 44(3): 604-624.
MA Xiao-jun, WU Qing-ju, PAN Jia-tie, ZHONG Shi-jun, XU Hui. AMBIENT NOISE EIKONAL TOMOGRAPHY BASED ON MUTI-CHANNEL CROSS-CORRELATION IN THE NORTHEASTERN MARGIN OF THE TIBETAN PLATEAU[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(3): 604-624.
图 1 研究区域的构造背景与台阵分布 蓝色三角为科学台阵2期流动台站, 灰色实线为主要的构造边界或断裂。 HYF 海原断裂; SQS 南祁连缝合带; KF 昆仑断裂; HT 河套-吉兰泰盆地; ALS 阿拉善盆地; OD 鄂尔多斯地块; YCD 银川盆地; QL 祁连造山带; KQ 西秦岭造山带; SG 松潘-甘孜地块
Fig. 1 Tectonic setting and stations in the study area.
图 2 以台站15581(a)和51555(b)为虚源(紫色五角星)的8s周期相速度及波场梯度方向
Fig. 2 Phase velocity and gradient direction at the 8s period of Rayleigh wave with the central station 15581(a) and 51555(b) as the virtual source.
图 3 台站64016对应的所有射线的走时延迟与距离差的关系 彩色叉为不同周期的走时延迟与均值之差<8s的结果, 黑色圆圈为超过8s的结果
Fig. 3 Travel time Delay with relative distance difference for the Station 64016.
图 10 本文结果(a)与钟世军等(2017)结果(b)的差异
Fig. 10 The phase velocity difference at different periods between this study (a) and the result from ZHONG Shi-jun et al., 2017 (b).
图 11 本文方法反演的结果与Lin等(2009)的传统程函成像方法结果的对比(12s和30s周期) a 本文计算结果; b 传统程函成像结果; c 二者之差(图a减去图b的结果)
Fig. 11 Comparison of phase velocity maps for periods of 12s and 30s.
[1] | 黄兴富, 高锐, 郭晓玉, 等. 2018. 青藏高原东北缘祁连山与酒西盆地结合部深部地壳结构及其构造意义[J]. 地球物理学报, 61(9): 3640—3650. |
HUANG Xing-fu, GAO Rui, GUO Xiao-yu, et al. 2018. Deep crustal structure beneath the junction of the Qilian Shan and Jiuxi Basin in the northeastern margin of the Tibetan plateau and its tectonic implications[J]. Chinese Journal of Geophysics, 61(9): 3640—3650 (in Chinese). | |
[2] | 李红蕾, 方剑, 王新胜, 等. 2017. 重力及重力梯度联合反演青藏高原及邻区岩石圈三维密度结构[J]. 地球物理学报, 60(6): 2469—2479. |
LI Hong-lei, FANG Jian, WANG Xin-sheng, et al. 2017. Lithospheric 3-D density structure beneath the Tibetan plateau and adjacent areas derived from joint inversion of satellite gravity and gravity-gradient data[J]. Chinese Journal of Geophysics, 60(6): 2469—2479 (in Chinese). | |
[3] | 李永华, 吴庆举, 安张辉, 等. 2006. 青藏高原东北缘地壳S波速度结构与泊松比及其意义[J]. 地球物理学报, 49(5): 1359—1368. |
LI Yong-hua, WU Qing-ju, AN Zhang-hui, et al. 2006. The Poisson ratio and crustal structure across the NE Tibetan plateau determined from receiver functions[J]. Chinese Journal of Geophysics, 49(5): 1359—1368 (in Chinese). | |
[4] | 潘佳铁, 李永华, 吴庆举, 等. 2017. 基于密集流动地震台阵的青藏高原东北缘及邻区Rayleigh波相速度层析成像[J]. 地球物理学报, 60(6): 2291—2303. |
PAN Jia-tie, LI Yong-hua, WU Qing-ju, et al. 2017. Phase velocity maps of Rayleigh wave based on a dense coverage and portable seismic array in NE Tibetan plateau and its adjacent regions[J]. Chinese Journal of Geophysics, 60(6): 2291—2303 (in Chinese). | |
[5] | 王新胜, 方剑, 许厚泽, 等. 2013. 青藏高原东北缘岩石圈三维密度结构[J]. 地球物理学报, 56(11): 3770—3778. |
WANG Xin-sheng, FANG Jian, HSU Hou-tse. 2013. 3D density structure of lithosphere beneath northeastern margin of the Tibetan plateau[J]. Chinese Journal of Geophysics, 56(11): 3770—3778 (in Chinese). | |
[6] | 王兴臣, 丁志峰, 武岩, 等. 2017. 中国南北地震带北段及其周缘地壳厚度与泊松比研究[J]. 地球物理学报, 60(6): 2080—2090. |
WANG Xing-chen, DING Zhi-feng, WU Yan, et al. 2017. Crustal thicknesses and Poisson’s ratios beneath the northern section of the north-south seismic belt and surrounding areas in China[J]. Chinese Journal of Geophysics, 60(6): 2080—2090 (in Chinese). | |
[7] | 汪洋, 邓晋福, 汪集旸, 等. 2001. 中国大陆热流分布特征及热-构造分区[J]. 中国科学院研究生院学报, 18(1): 51—58. |
WANG Yang, DENG Jin-fu, WANG Ji-yang, et al. 2001. Terrestrial heat flow pattern and thermo-tectonic domains in the continental area of China[J]. Journal of the Graduate School of the Chinese Academy of Science, 18(1): 51—58 (in Chinese). | |
[8] | 夏时斌, 王绪本, 闵刚, 等. 2019. 青藏高原东北缘祁连山造山带至阿拉善地块壳幔电性结构研究[J]. 地球物理学报, 62(3): 950—966. |
XIA Shi-bin, WANG Xu-ben, MIN Gang, et al. 2019. Crust and uppermost mantle electrical structure beneath Qilianshan orogenic belt and Alxa block in northeastern margin of the Tibetan plateau[J]. Chinese Journal of Geophysics, 62(3): 950—966 (in Chinese). | |
[9] | 杨嵩, 熊熊, 郑勇, 等. 2013. 华北地区上地幔温度及岩石圈厚度分布研究[J]. 地球物理学报, 56(11): 3855—3867. |
YANG Song, XIONG Xiong, ZHENG Yong, et al. 2013. Upper-mantle temperature and lithospheric thickness of North China[J]. Chinese Journal of Geophysics, 56(11): 3855—3867 (in Chinese). | |
[10] | 杨志高, 陈运泰, 张雪梅, 等. 2019. 青藏高原东缘及东北缘S波速度结构和径向各向异性[J]. 地球物理学报, 62(12): 4554—4570. |
YANG Zhi-gao, CHEN Yun-tai, ZHANG Xue-mei, et al. 2019. S-wave velocity structure and radial anisotropy in eastern and north-eastern margins of Tibetan plateau[J]. Chinese Journal of Geophysics, 62(12): 4554—4570 (in Chinese). | |
[11] | 叶卓, 高锐, 李秋生, 等. 2018. 青藏高原向东挤出与向北扩展: 高原隆升深部过程之探讨[J]. 科学通报, 63(31): 3217—3228. |
YE Zhuo, GAO Rui, LI Qiu-sheng, et al. 2018. Eastward extrusion and northward expansion of the Tibetan plateau: Discussions for the deep processes of the plateau uplift[J]. Chinese Science Bulletin, 63(31): 3217—3228 (in Chinese). | |
[12] | 曾融生, 丁志峰, 吴庆举. 1994. 青藏高原岩石圈构造及动力学过程研究[J]. 地球物理学报, 37(S2): 99—116. |
ZENG Rong-sheng, DING Zhi-feng, WU Qing-ju. 1994. A review on the lithospheric structures in Tibetan plateau and constraints for dynamics[J]. Chinese Journal of Geophysics, 37(S2): 99—116 (in Chinese). | |
[13] | 张风雪, 吴庆举, 丁志峰. 2018. 青藏高原东部P波速度结构及其对高原隆升的启示[J]. 科学通报, 63(19): 1949—1961. |
ZHANG Feng-xue, WU Qing-ju, DING Zhi-feng. 2018. A P-wave velocity study beneath the eastern region of Tibetan plateau and its implication for plateau growth[J]. Chinese Science Bulletin, 63(19): 1949—1961 (in Chinese). | |
[14] | 张乐天, 金胜, 魏文博, 等. 2012. 青藏高原东缘及四川盆地的壳幔导电性结构研究[J]. 地球物理学报, 55(12): 4126—4137. |
ZHANG Le-tian, JIN Sheng, WEI Wen-bo, et al. 2012. Electrical structure of crust and upper mantle beneath the eastern margin of the Tibetan plateau and the Sichuan Basin[J]. Chinese Journal of Geophysics, 55(12): 4126—4137 (in Chinese). | |
[15] | 郑晨, 丁志峰, 宋晓东. 2018. 面波频散与接收函数联合反演南北地震带北段壳幔速度结构[J]. 地球物理学报, 61(4): 1211—1224. |
ZHENG Chen, DING Zhi-feng, SONG Xiao-dong. 2018. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure beneath the northern north-south seismic zone[J]. Chinese Journal of Geophysics, 61(4): 1211—1224 (in Chinese). | |
[16] | 郑孟林, 金之钧, 王毅, 等. 2006. 鄂尔多斯盆地北部中新生代构造特征及其演化[J]. 地球科学与环境学报, 28(3): 31—36. |
ZHENG Meng-lin, JIN Zhi-jun, WANG Yi, et al. 2006. Structural characteristics and evolution of north Ordos Basin in Late Mesozoic and Cenozoic[J]. Journal of Earth Sciences and Environment, 28(3): 31—36 (in Chinese). | |
[17] | 钟世军, 吴建平, 房立华, 等. 2017. 青藏高原东北缘及周边地区基于程函方程的面波层析成像[J]. 地球物理学报, 60(6): 2304—2314. |
ZHONG Shi-jun, WU Jian-ping, FANG Li-hua, et al. 2017. Surface wave eikonal tomography in and around the northeastern margin of the Tibetan plateau[J]. Chinese Journal of Geophysics, 60(6): 2304—2314 (in Chinese). | |
[18] |
Bai D, Unsworth M, Meju M, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3(5): 358—362. doi.org/10.1038/ngeo830.
DOI |
[19] |
Bao X, Song X, Li J. 2015. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth and Planetary Science Letters, 417(9): 132—141. doi.org/10.1016/j.epsl.2015.02.024.
DOI |
[20] |
Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 169(3): 1239—1260. doi.org/10.1111/j.1365-246X.2007.03374.x.
DOI |
[21] |
Boué P, Roux P, Campillo M, et al. 2013. Double beamforming processing in a seismic prospecting context[J]. Geophysics, 78(3): 101—108. doi.org/10.1190/geo2012-0364.1.
DOI |
[22] | Brenguier F, Shapiro N M, Campillo M, et al. 2007. 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations[J]. Geophysical Research Letters, 34(2): L02305. |
[23] |
Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust[J]. Bulletin of the Seismological Society of America, 95(6): 2081—2092. doi.org/10.1785/0120050077.
DOI |
[24] |
Chen L, Cheng C, Wei Z. 2009. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton[J]. Earth and Planetary Science Letters, 286(1): 171—183. doi.org/10.1016/j.epsl.2009.06.022.
DOI URL |
[25] |
Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703—706.
DOI URL |
[26] |
He C, Santosh M. 2017. Intraplate earthquakes and their link with mantle dynamics: Insights from P-wave teleseismic tomography along the northern part of the North-South Tectonic Zone in China[J]. Comptes Rendus Geosciences, 349(3): 96—105. doi.org/10.1016/j.crte.2017.04.002.
DOI URL |
[27] |
Jin G, Gaherty J B. 2015. Surface wave phase-velocity tomography based on multichannel cross-correlation[J]. Geophysical Journal International, 201(3): 1383—1398. doi.org/10.1093/gji/ggv079.
DOI |
[28] |
Lei J, Zhao D, Xu X, et al. 2019. Is there a big mantle wedge under eastern Tibet?[J]. Physics of the Earth and Planetary Interiors, 292(7): 100—113. doi.org/10.1016/j.pepi.2019.04.005.
DOI URL |
[29] | Levshin A L, Pisarenko V F, Pogrebinsky G A. 1972. On a frequency-time analysis of oscillations[J]. Annales de Geophysique, 28(2): 211—218. |
[30] |
Levshin A L, Ratnikova L, Berger J. 1992. Peculiarities of surface wave propagation across Central Eurasia[J]. Bulletin of the Seismological Society of America, 82(6): 2464—2493.
DOI URL |
[31] |
Li Y H, Pan J T, Wu Q J, et al. 2017. Lithospheric structure beneath the northeastern Tibetan plateau and the western Sino-Korea Craton revealed by Rayleigh wave tomography[J]. Geophysical Journal International, 210(2): 570—584. doi.org/10.1093/gji/ggx181.
DOI |
[32] |
Lin F C, Moschetti M P, Ritzwoller M H. 2008. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps[J]. Geophysical Journal International, 173(1): 281—298.
DOI URL |
[33] |
Lin F C, Ritzwoller M H, Snieder R. 2009. Eikonal tomography: Surface wave tomography by phase front tracking across a regional broad-band seismic array[J]. Geophysical Journal International, 177(3): 1091—1110. doi.org/j.1365-246X.2009.04105.x.
DOI |
[34] |
Liu M, Mooney W D, Li S, et al. 2006. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos Basin[J]. Tectonophysics, 420(1): 253—266. doi.org/10.1016/j.tecto.2006.01.025.
DOI URL |
[35] |
Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision[J]. Science, 189(4201): 419—426. doi.org/10.1126/science.189.4201.419.
DOI PMID |
[36] |
Mordret A, Rivet D, Landès M, et al. 2015. Three-dimensional shear velocity anisotropic model of Piton de la Fournaise volcano(La Réunion Island)from ambient seismic noise[J]. Journal of Geophysical Research: Solid Earth, 120(1): 406—427. doi.org/10.1002/2014JB011654.
DOI |
[37] |
Poli P, Campillo M, Pedersen H A. 2012a. Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise[J]. Science, 338(6110): 1063—1065. doi.org/10.1126/science.1228194.
DOI URL |
[38] |
Poli P, Pedersen H A, Campillo M. 2012b. Emergence of body waves from cross-correlation of short period seismic noise[J]. Geophysical Journal International, 188(2): 549—558.
DOI URL |
[39] |
Qiu H, Lin F, Ben-Zion Y. 2019. Eikonal tomography of the southern California plate boundary region[J]. Journal of Geophysical Research: Solid Earth, 124(9): 9755—9779. doi.org/10.1029/2019JB017806.
DOI |
[40] | Rawlinson N, Reading A, Kennett B. 2006. Lithospheric structure of Tasmania from a novel form of teleseismic tomography[J]. Journal of Geophysical Research, 111(B2): 301—322. |
[41] |
Royden L H, Burchfiel B C, King B R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 276(5313): 788—790. doi.org/10.1126/science.276.5313.788.
DOI PMID |
[42] |
Sabra K G, Gerstoft P, Roux P, et al. 2005. Surface wave tomography from microseism in southern California[J]. Geophysical Research Letters, 32(14): L14311. doi.org/10.1029/2005GL023155.
DOI |
[43] |
Sager K, Boehm C, Ermert L, et al. 2020. Global-scale full-waveform ambient noise inversion[J]. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB018644. doi.org/10.1029/2019JB018644.
DOI |
[44] |
Shapiro N M, Ritzwoller M H, Molnar P, et al. 2004. Thinning and flow of Tibetan crust constrained by seismic anisotropy[J]. Science, 305(5681): 233—236. doi.org/10.1126/science.1098276.
DOI URL |
[45] |
Shapiro N M, Campillo M, Stehly L, et al. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 307(5715): 1615—1618. doi.org/10.1126/science.1108339.
DOI URL |
[46] | Shearer P M. 2009. Introduction to Seismology[M]. Cambridge University Press. |
[47] |
Shen W, Ritzwoller M H, Kang D, et al. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International, 206(2): 954—979. doi.org/10.1093/gji/ggw175.
DOI |
[48] |
Shen X, Yuan X, Ren J. 2015. Anisotropic low-velocity lower crust beneath the northeastern margin of Tibetan plateau: Evidence for crustal channel flow[J]. Geochemistry, Geophysics, Geosystems, 16(12): 4223—4236. doi.org/10.1002/2015GC005952.
DOI |
[49] |
Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611—616. doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2.
DOI URL |
[50] |
Tapponnier P, Xu Z, Roger F, et al. 2001. Oblique, stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671—1677. doi.org/10.1126/science.105978.
DOI PMID |
[51] |
Wang K, Lu L, Maupin V, et al. 2020. Surface wave tomography of northeastern Tibetan plateau using beamforming of seismic noise at a dense array[J]. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB018416. doi.org/10.1029/2019JB018416.
DOI |
[52] |
Wang Q, Niu F, Gao Y, et al. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data[J]. Geophysical Journal International, 204(1): 167—179. doi.org/10.1093/gji/ggv420.
DOI |
[53] |
Wang W, Wu J, Fang L, et al. 2017. Sedimentary and crustal thicknesses and Poisson‘s ratios for the NE Tibetan plateau and its adjacent regions based on dense seismic arrays[J]. Earth and Planetary Science Letters, 462(10): 76—85. doi.org/10.1016/j.eps1.2016.12.040.
DOI URL |
[54] |
Yang Y, Ritzwoller M H, Zheng Y, et al. 2012. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet[J]. Journal of Geophysical Research, 117(B4): 303—323. doi: 10.1029/2011JB008810.
DOI |
[55] |
Yuan D Y, Ge W P, Chen Z W, et al. 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies[J]. Tectonics, 32(5): 1358—1370. doi.org/10.1002/tect.20081.
DOI |
[56] |
Zhao L F, Xie X B, He J K, et al. 2013. Crustal flow pattern beneath the Tibetan plateau constrained by regional Lg-wave Q tomography[J]. Earth and Planetary Science Letters, 383(23): 113—122. doi.org/10.1016/j.epsl.2013.09.038.
DOI URL |
[1] | 周铭, 段永红, 檀玉娟, 邱勇. 基于密集台阵的东濮凹陷中北段浅层速度结构[J]. 地震地质, 2023, 45(2): 517-535. |
[2] | 苟家宁, 刘子维, 江颖, 张晓彤. 震前重力扰动与背景噪声时空变化特征以玛多MS7.4与漾濞MS6.4地震为例[J]. 地震地质, 2023, 45(1): 252-268. |
[3] | 宫猛, 吕坚, 郑勇, 谢祖军, 盛书中, 张杏棉. 华南地块及邻区基于背景噪声的壳幔三维S波速度结构[J]. 地震地质, 2022, 44(4): 1011-1028. |
[4] | 杨建文, 金明培, 叶泵, 高琼, 陈佳, 张华英, 邓嘉美. 利用背景噪声研究漾濞MS6.4地震前区域波速变化[J]. 地震地质, 2021, 43(5): 1171-1187. |
[5] | 孔祥艳, 吴建平, 房立华, 蔡妍, 范莉苹, 王未来. 利用面波频散和接收函数联合反演中国境内天山及邻区的地壳上地幔速度结构[J]. 地震地质, 2020, 42(4): 844-865. |
[6] | 宗健业, 孙新蕾, 张鹏. 利用HVSR方法研究广州地区的场地效应及估算地震灾害特征[J]. 地震地质, 2020, 42(3): 628-639. |
[7] | 冯红武, 颜文华, 严珊, 郭瑛霞, 惠少兴, 常城. 背景噪声和地震面波联合反演渭河盆地及邻区壳幔S波速度结构[J]. 地震地质, 2019, 41(5): 1185-1205. |
[8] | 王霞, 宋美琴, 郑勇, 艾三喜. 山西及邻区壳幔速度图像特征及其构造意义[J]. 地震地质, 2019, 41(1): 119-136. |
[9] | 熊诚, 谢祖军, 郑勇, 熊熊, 艾三喜, 谢仁先. 大别—郯庐造山带地壳上地幔Rayleigh面波层析成像[J]. 地震地质, 2019, 41(1): 1-20. |
[10] | 谢辉, 马禾青, 焦明若, 马小军, 张楠, 李青梅. 利用背景噪声成像技术反演宁夏及邻区S波速度结构[J]. 地震地质, 2017, 39(3): 605-622. |
[11] | 宫猛, 徐锡伟, 张新东, 欧阳龙斌, 江国焰, 董博. 华北东部基于背景噪声的壳幔三维S波速度结构[J]. 地震地质, 2017, 39(1): 130-146. |
[12] | 谢晓峰, 杨微, 李俊, 林建民, 王伟涛, 姚琳, 吕俊强. 宁夏及其邻区背景噪声能量来源方位及强度的季节性变化分析[J]. 地震地质, 2014, 36(1): 80-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||