地震地质 ›› 2022, Vol. 44 ›› Issue (2): 506-523.DOI: 10.3969/j.issn.0253-4967.2022.02.014
• 2021年玛多地震地表破裂机理研究专题文章 • 上一篇 下一篇
邵延秀1)(), 刘静1,2),*(), 高云鹏1), 王文鑫1), 姚文倩1), 韩龙飞1), 刘志军1), 邹小波3), 王焱1), 李云帅1), 刘璐4)
收稿日期:
2022-01-25
修回日期:
2022-03-20
出版日期:
2022-04-20
发布日期:
2022-06-14
通讯作者:
刘静
作者简介:
邵延秀, 男, 1984年生, 2018年于中国地震局地质研究所获构造地质专业博士学位, 副教授, 主要从事活动构造和构造地貌方面的研究工作, E-mail: shaoyx@tju.edu.cn。
基金资助:
SHAO Yan-xiu1)(), LIU-ZENG Jing1,2),*(), GAO Yun-peng1), WANG Wen-xin1), YAO Wen-qian1), HAN Long-fei1), LIU Zhi-jun1), ZOU Xiao-bo3), WANG Yan1), LI Yun-shuai1), LIU Lu4)
Received:
2022-01-25
Revised:
2022-03-20
Online:
2022-04-20
Published:
2022-06-14
Contact:
LIU-ZENG Jing
摘要:
同震位移作为量化地震破裂特征的基本参数, 可为探究断裂活动机制和预测未来地震危险性提供重要的约束条件。尽管大地测量技术能够快速刻画地震在时空上的破裂特征, 然而详细的野外实地调查与测量仍然是获得可靠同震位移和提取弥散变形特征最有效的方法。文中以2021年青海玛多 MW7.4 地震为例, 基于无人机正射影像, 对破裂带进行了详细的解译, 并结合国外震例的研究结果探讨了走滑地震的弥散变形特征及其意义。玛多地震的发震断裂为左旋走滑性质的昆仑山口-江错断裂的东南段, 其地表破裂带在西段整体沿山前或山麓地带展布, 主要是由挤压鼓包、 张剪裂缝和断层陡坎等沿近EW向雁列组合而成的左旋剪切破裂带。结合震前卫星影像, 对该破裂带西段较大位移点的鄂陵湖南侧断错车轮印迹线进行了震前和震后的精细填绘与对比分析。结果表明, 该段同震变形在主破裂带南侧存在弥散变形现象, 重新恢复获得的总左旋位移量约为3.6m, 其中主变形位移量约为2.7m, 弥散变形量约为0.9m, 占主变形位移量的33%。综合分析后认为, 弥散变形在走滑型同震破裂带上可能普遍存在, 而且往往具有不对称性。新的研究结果指示, 在走滑断层的滑动速率研究中, 观测点应尽量选在几何结构简单的区段, 从而减少弥散变形的影响。
中图分类号:
邵延秀, 刘静, 高云鹏, 王文鑫, 姚文倩, 韩龙飞, 刘志军, 邹小波, 王焱, 李云帅, 刘璐. 同震地表破裂的位移测量与弥散变形分析——以2021年青海玛多MW7.4地震为例[J]. 地震地质, 2022, 44(2): 506-523.
SHAO Yan-xiu, LIU-ZENG Jing, GAO Yun-peng, WANG Wen-xin, YAO Wen-qian, HAN Long-fei, LIU Zhi-jun, ZOU Xiao-bo, WANG Yan, LI Yun-shuai, LIU Lu. COSEISMIC DISPLACEMENT MEASUREMENT AND DISTRIBUTED DEFORMATION CHARACTERIZATION: A CASE OF 2021 MW7.4 MADOI EARTHQUAKE[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 506-523.
图 2 玛多地震西段鄂陵湖南侧破裂带的填图结果 底图为90m SRTM DEM生成的山影图, 虚线框为航空摄影测量获得的正射影像覆盖区, 底图为航空摄影测量获得DEM生成的山影图
Fig. 2 Rupture mapping along the western segment (south of the Eling Hu) of the Madoi earthquake.
图 4 玛多地震西段鄂陵湖南侧的地震地表破裂带特征 a、 b 主破裂带呈雁列排列的剪切裂缝和鼓包的野外照片; c 被错断车轮印的野外照片; d 利用增强现实技术将车轮印三维扫描结果投影在室内地板上, 红色箭头指示车轮印的边界
Fig. 4 The western segment of surface rupture of the Madoi earthquake at the south of the Eling Hu.
图 8 1999年土耳其Izmit-Düzce地震的位移测量(修改自Rockwell等, 2002) a 1999年土耳其Izmit-Düzce 2次地震破裂带的几何展布特征, 阿拉伯数字为Rockwell等(2002)野外考察的测量点; b Düzce地震破裂带上2号研究点的测量结果; c Izmit地震破裂带上10号研究点的测量结果
Fig. 8 Coseismic displacements of 1999 Izmit-Düzce earthquakes in Turkey(modified from Rockwell et al., 2002).
图 9 1999年美国Hector Mine地震的位移测量(修改自Treiman等, 2002) 照片和测绘点不是同一个位置
Fig. 9 Coseismic displacement of 1999 Hector Mine earthquake in the US (modified from Treiman et al., 2002).
[1] | 毕海芸, 郑文俊, 曾江源, 等. 2017. SfM摄影测量方法在活动构造定量研究中的应用[J]. 地震地质, 39(4): 656-674. |
BI Hai-yun, ZHENG Wen-jun, ZENG Jiang-yuan,et al. 2017. Application of SfM photogrammetry method to the quantitative study of active tectonics[J]. Seismology and Geology, 39(4): 656-674. (in Chinese) | |
[2] | 邓起东, 高翔, 陈桂华, 等. 2010. 青藏高原昆仑-汶川地震系列与巴颜喀喇断块的最新活动[J]. 地学前缘, 17(5): 163-178. |
DENG Qi-dong, GAO Xiang, CHEN Gui-hua,et al. 2010. Recent tectonic activity of Bayankala fault-block and the Kunlun-Wenchuan earthquake series of the Tibetan plateau[J]. Earth Science Frontiers, 17(5): 163-178. (in Chinese) | |
[3] | 邓起东, 于贵华, 叶文华. 1992. 地震地表破裂参数与震级关系的研究 [G]//邓起东(主编). 活动断裂研究(2)北京: 地震出版社. 247-264. |
DENG Qi-dong, YU Gui-hua, YE Wen-hua. 1992. Research on relationship between surface rupture parameters and magnitude of earthquake [G]//DENG Qi-dong(ed). Research of Active Fault (2). Seismological Press, Beijing: 247-264. (in Chinese) | |
[4] | 邓起东, 张培震, 冉勇康, 等. 2002. 中国活动构造基本特征[J]. 中国科学(D辑), 46(4): 1020-1030, 1057. |
DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang,et al. 2002. Basic characteristics of active tectonics in China[J]. Science in China(Ser D), 46(4): 1020-1030,1057. (in Chinese) | |
[5] | 邓起东, 张培震, 冉勇康, 等. 2003. 中国活动构造与地震活动[J]. 地学前缘, 10(S1): 66-73. |
DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang,et al. 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers, 10(S1): 66-73. (in Chinese) | |
[6] | 盖海龙, 姚生海, 杨丽萍, 等, 2021. 青海玛多“5·22” MS7.4 地震的同震地表破裂特征、 成因及意义[J]. 地质力学学报, 27(6): 899-912. |
GAI Hai-long, YAO Sheng-hai, YANG Li-ping,et al. 2021. Characteristics and causes of coseismic surface rupture triggered by the “5·22” MS7.4 earthquake in Maduo, Qinghai, and their significance[J]. Journal of Geomechanics, 27(6): 899-912. (in Chinese) | |
[7] | 国家地震局震害防御司. 1995. 中国历史强震目录(公元前23世纪-公元1911年)[Z]. 北京: 地震出版社: 1-514. |
Department of Earthquake Disaster Prevention, State Seismological Bureau. 1995. Catalogue of Chinese Historical Strong Earthquakes(23rd Century BC to 1911)[Z]. Seismological Press: Beijing:1-514. (in Chinese) | |
[8] | 韩龙飞, 刘静, 姚文倩, 等. 2022. 2021年玛多MW7.4地震震中区地表破裂的精细填图及阶区内的分布式破裂讨论[J]. 地震地质, 44(2): 484-505. |
HAN Long-fei, LIU-ZENG Jing, YAO Wen-qian,et al. 2022. Detailed mapping of the surface rupture near the epicenter segment of the 2021 Madoi MW7.4 earthquake and discussion on distributed rupture in the step-over[J]. Seismology and Geology, 44(2): 484-505. | |
[9] | 侯增谦, 郑远川, 卢占武, 等. 2020. 青藏高原巨厚地壳: 生长、 加厚与演化[J]. 地质学报, 94(10): 2797-2815. |
HOU Zeng-qian, ZHENG Yuan-chuan, LU Zhan-wu,et al. 2020. Growth, thickening and evolution of the thickened crust of the Tibet Plateau[J]. Acta Geologica Sinica, 94(10): 2797-2815. (in Chinese) | |
[10] | 李陈侠, 徐锡伟, 闻学泽, 等. 2009. 东昆仑断裂东段玛沁-玛曲段几何结构特征[J]. 地震地质, 31(3): 441-458. |
LI Chen-xia, XU Xi-wei, WEN Xue-ze,et al. 2009. The segmental characteristics of geometrical structure of the east Kunlun active fault(Maqin-Maqu segment)[J]. Seismology and Geology, 31(3): 441-458. (in Chinese) | |
[11] | 李海兵, 潘家伟, 孙知明, 等. 2021. 大陆构造变形与地震活动: 以青藏高原为例[J]. 地质学报, 95(1): 194-213. |
LI Hai-bing, PAN Jia-wei, SUN Zhi-ming,et al. 2021. Continental tectonic deformation and seismic activity: A case study from the Tibetan plateau[J]. Acta Geologica Sinica, 95(1): 194-213. (in Chinese) | |
[12] | 李智敏, 李文巧, 李涛, 等. 2021. 2021年5月22日青海玛多 MS7.4 地震的发震构造和地表破裂初步调查[J]. 地震地质, 43(3): 722-737. |
LI Zhi-min, LI Wen-qiao, LI Tao,et al. 2021. Seismogenic fault and coseismic surface deformation of the Maduo MS7.4 earthquake in Qinghai, China: A quick report[J]. Seismology and Geology, 43(3): 722-737. (in Chinese) | |
[13] | 刘小利, 夏涛, 刘静, 等. 2022. 2021 年青海玛多 MW7.4 地震分布式同震地表裂缝特征[J]. 地震地质, 44(2): 461-483. |
LIU Xiao-li, XIA Tao, LIU-ZENG Jing,et al. 2022. Distributed characteristics of the surface deformations associated with the 2021 MW 7.4 Madoi earthquake, Qinghai, China[J]. Seismology and Geology, 44(2): 461-483. | |
[14] | 潘家伟, 白明坤, 李超, 等. 2021. 2021年5月22日青海玛多 MS7.4 地震地表破裂带及发震构造[J]. 地质学报, 95(6): 1655-1670. |
PAN Jia-wei, BAI Ming-kun, LI Chao,et al. 2021. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo MS7.4 earthquake[J]. Acta Geologica Sinica, 95(6): 1655-1670. (in Chinese) | |
[15] | 任俊杰, 徐锡伟, 张世民, 等. 2017. 东昆仑断裂带东端的构造转换与2017年九寨沟 MS7.0 地震孕震机制[J]. 地球物理学报, 60(10): 4027-4045. |
REN Jun-jie, XU Xi-wei, ZHANG Shi-min,et al. 2017. Tectonic transformation at the eastern termination of the eastern Kunlun fault zone and seismogenic mechanism of the 8 August 2017 Jiuzhaigou MS7.0 earthquake[J]. Chinese Journal of Geophysics, 60(10): 4027-4045. (in Chinese) | |
[16] | 王朋涛, 邵延秀, 张会平, 等. 2016. sUAV摄影技术在活动构造研究中的应用: 以海原断裂骟马沟为例[J]. 第四纪研究, 36(2): 433-442. |
WANG Peng-tao, SHAO Yan-xiu, ZHANG Hui-ping,et al. 2016. The application of sUAV photogrammetry in active tectonics: Shanmagou site of Haiyuan Fault, for example[J]. Quaternary Sciences, 36(2): 433-442. (in Chinese) | |
[17] | 王文鑫, 邵延秀, 姚文倩, 等. 2022. 基于摄影测量技术对玛多MW7.4地震地表破裂特征的快速提取及三维结构的室内重建[J]. 地震地质, 44(2): 524-540. |
WANG Wen-xin, SHAO Yan-xiu, YAO Wen-qian,et al. 2022. Rapid extraction of features and indoor reconstruction of 3D structures of Madoi MW7.4 earthquake surface ruptures based on photogrammetry method[J]. Seismology and Geology, 44(2): 524-540. | |
[18] | 姚文倩, 王子君, 刘静, 等. 2022. 2021年青海玛多MW7.4地震同震地表破裂长度的讨论[J]. 地震地质, 44(2): 541-559. |
YAO Wen-qian, WANG Zi-jun, LIU-ZENG Jing,et al. 2022. Discussion on coseismic surface rupture length of the 2021 MW7.4 Madoi earthquake, Qinghai, China[J]. Seismology and Geology, 44(2): 541-559. | |
[19] | 张培震, 邓起东, 张国民, 等. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 33(S1): 12-20. |
ZHANG Pei-zhen, DENG Qi-dong, ZHANG Guo-min,et al. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China(Ser D), 33(S1): 12-20. (in Chinese) | |
[20] | 张裕明, 李闵峰, 孟勇琦, 等. 1996. 巴颜喀拉山地区断层活动性研究及其地震地质意义 G//邓起东主编. 活动断裂研究(5). 北京: 地震出版社. 154-171. |
ZHANG Yu-ming, LI Min-feng, MENG Yong-qi, et al. 1996. Research on fault activities and their seismogeological implication in Bayankala Mountain area [G]//DENG Qi-dong(ed). Research of Active Fault (5). Seismological Press, Beijing: 154-171. (in Chinese) | |
[21] | Antoine S L, Klinger Y, Delorme A,et al. 2021. Diffuse deformation and surface faulting distribution from submetric image correlation along the 2019 Ridgecrest, California, ruptures[J]. Bulletin of the Seismological Society of America, 111(5): 2275-2302. |
[22] |
Avouac J P, Ayoub F, Leprince S,et al. 2006. The 2005, MW7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis[J]. Earth and Planetary Science Letters, 249(3-4): 514-528.
DOI URL |
[23] |
Ayoub F, Leprince S, Avouac J P. 2009. Co-registration and correlation of aerial photographs for ground deformation measurements[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6): 551-560.
DOI URL |
[24] |
Barka A. 1999. The 17 August 1999 Izmit earthquake[J]. Science, 285(5435): 1858-1859. doi: 10.1126/science.285.5435.1858.
DOI URL |
[25] | Bemis S P, Micklethwaite S, Turner D,et al. 2014. Ground-based and UAV-based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology[J]. Journal of Structural Geology, 69(Part A): 163-178. |
[26] |
Bürgmann R, Ergintav S, Segall P,et al. 2002. Time-dependent distributed afterslip on and deep below the Izmit earthquake rupture[J]. Bulletin of the Seismological Society of America, 92(1): 126-137. doi: 10.1785/0120000833.
DOI URL |
[27] |
Bürgmann R, Rosen P A, Fielding E J. 2000. Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation[J]. Annual Review of Earth and Planetary Sciences, 28(1): 169-209.
DOI URL |
[28] |
Dolan J F, Haravitch B D. 2014. How well do surface slip measurements track slip at depth in large strike-slip earthquakes?The importance of fault structural maturity in controlling on-fault slip versus off-fault surface deformation[J]. Earth and Planetary Science Letters, 388: 38-47. doi: 10.1016/j.pngl.2013.11.043.
DOI URL |
[29] |
Elliott A J, Dolan J F, Oglesby D D. 2009. Evidence from coseismic slip gradients for dynamic control on rupture propagation and arrest through stepovers[J]. Journal of Geophysical Research: Solid Earth, 114(B2). doi: 10.1029/2008JB005969.
DOI |
[30] |
Gold R D, Reitman N G, Briggs R W,et al. 2015. On- and off-fault deformation associated with the September 2013 MW7.7 Balochistan earthquake: Implications for geologic slip rate measurements[J]. Tectonophysics, 660: 65-78. doi: 10.1016/j.tecto.2015.08.019.
DOI URL |
[31] |
Jin Z, Fialko Y. 2021. Coseismic and early postseismic deformation due to the 2021 M7.4 Maduo(China)earthquake[J]. Geophysical Research Letters, 48(21). doi: 10.1029/2021GL095213.
DOI |
[32] |
Kirby E, Harkins N, Wang E,et al. 2007. Slip rate gradients along the eastern Kunlun Fault[J]. Tectonics, 26(2). doi: 10.1029/2006TC002033.
DOI |
[33] |
Klinger Y. 2010. Relation between continental strike-slip earthquake segmentation and thickness of the crust[J]. Journal of Geophysical Research: Solid Earth, 115(B7). doi: 10.1029/2009JB006550.
DOI |
[34] | Klinger Y, Michel R, King G. 2006. Evidence for an earthquake barrier model from MW not, vert, similar 7.8 Kokoxili(Tibet)earthquake slip-distribution[J]. Translated World Seismology, 242(3-4): 354-364. |
[35] |
Klinger Y, Okubo K, Vallage A,et al. 2018. Earthquake damage patterns resolve complex rupture processes[J]. Geophysical Research Letters, 45(19): 10279-10287. doi: 10.1029/2018GL078842.
DOI URL |
[36] |
Liu-Zeng J, Yao W, Liu X,et al. 2022. High-resolution Structure-from-Motion models covering 160km long surface ruptures of the 2021 MW7.4 Madoi earthquake in northern Qinghai-Tibetan Plateau[J]. Earthquake Regearch Advances. doi: http://doi.org/10.1016/j.eqrea.2022.100140.
DOI |
[37] |
Milliner C W D, Dolan J F, Hollingsworth J,et al. 2016. Comparison of coseismic near-field and off-fault surface deformation patterns of the 1992 MW7.3 Landers and 1999 MW7.1 Hector Mine earthquakes: Implications for controls on the distribution of surface strain[J]. Geophysical Research Letters, 43(19): 10115-10124. doi: 10.1002/2016GL069841.
DOI URL |
[38] |
Milliner C W D, Dolan J F, Hollingsworth J,et al. 2015. Quantifying near-field and off-fault deformation patterns of the 1992 MW7.3 Landers earthquake[J]. Geochemistry, Geophysics, Geosystems, 16(5): 1577-1598. doi: 10.1002/2014GC005693.
DOI URL |
[39] |
Oglesby D. 2008. Rupture termination and jump on parallel offset faults[J]. Bulletin of the Seismological Society of America, 98(1): 440-447. doi: 10.1785/0120070163.
DOI URL |
[40] |
Oskin M E, Arrowsmith J R, Corona A H,et al. 2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LiDAR[J]. Science, 335(6069): 702-705.
DOI URL |
[41] |
Rockwell T K, Klinger Y. 2013. Surface rupture and slip distribution of the 1940 Imperial Valley earthquake, Imperial Fault, southern California: Implications for rupture segmentation and dynamics[J]. Bulletin of the Seismological Society of America, 103(2A): 629-640.
DOI URL |
[42] |
Rockwell T K, Lindvall S, Dawson T,et al. 2002. Lateral offsets on surveyed cultural features resulting from the 1999 Izmit and Düzce earthquakes, Turkey[J]. Bulletin of the Seismological Society of America, 92(1): 79-94. doi: 10.1785/0120000809.
DOI URL |
[43] | Scholz C H. 2019. The Mechanics of Earthquakes and Faulting[M]. Cambridge University Press, Cambridge, United Kingdom. |
[44] |
Shelef E, Oskin M. 2010. Deformation processes adjacent to active faults: Examples from eastern California[J]. Journal of Geophysical Research: Solid Earth, 115(B5). doi: 10.1029/2009JB006289.
DOI |
[45] |
Tapponnier P, Zhiqin X, Roger F,et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677.
PMID |
[46] |
Treiman J A, Kendrick K J, Bryant W A,et al. 2002. Primary surface rupture associated with the MW7.1 16 October 1999 Hector Mine earthquake, San Bernardino County, California[J]. Bulletin of the Seismological Society of America, 92(4): 1171-1191. doi: 10.1785/0120000923.
DOI URL |
[47] |
Ullman S. 1979. The interpretation of structure from motion[J]. Proceedings of the Royal Society B: Biological Sciences, 203(1153): 405-426.
PMID |
[48] |
van der Woerd J, Tapponnier P, Ryerson F J,et al. 2002. Uniform postglacial slip-rate along the central 600km of the Kunlun Fault(Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology[J]. Geophysical Journal International, 148(3): 356-388.
DOI URL |
[49] |
Weldon R, Sieh K E. 1985. Holocene rate of slip and tentative recurrence interval for large earthquakes on the San Andreas Fault, Cajon Pass, Southern California[J]. Geological Society of America Bulletin, 96(6): 793-812.
DOI URL |
[50] | Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. |
[51] |
Wesnousky S G. 2008. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture[J]. Bulletin of the Seismological Society of America, 98(4): 1609-1632. doi: org/10.1785/0120070111.
DOI URL |
[52] |
Xu X, Tong X, Sandwell D T,et al. 2016. Refining the shallow slip deficit[J]. Geophysical Journal International, 204(3): 1867-1886. doi: org/10.1093/gji/ggv563.
DOI |
[53] |
Xu X, Yu G, Klinger Y,et al. 2006. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake( MW7.8 ), northern Tibetan plateau, China[J]. Journal of Geophysical Research, 111(B5). doi: 10.1029/2004JB003488.
DOI |
[54] |
Zhou Y, Parsons B E, Walker R T. 2018. Characterizing complex surface ruptures in the 2013 MW7.7 Balochistan earthquake using three-dimensional displacements[J]. Journal of Geophysical Research: Solid Earth, 123(11): 10191-10211. doi: 10.1029/2018JB016043.
DOI URL |
[1] | 杨源源, 李鹏飞, 路硕, 疏鹏, 潘浩波, 方良好, 郑海刚, 赵朋, 郑颖平, 姚大全. 郯庐断裂带中段F5断裂淮河-女山湖段的古地震与垂直滑动速率[J]. 地震地质, 2022, 44(6): 1365-1383. |
[2] | 张秀丽, 熊建国, 张培震, 刘晴日, 姚勇, 钟岳志, 张会平, 李有利. 中更新世晚期以来中条山北麓断层滑动速率研究[J]. 地震地质, 2022, 44(6): 1403-1420. |
[3] | 邓文泽, 刘杰, 杨志高, 孙丽, 张雪梅. 青海玛多MS7.4地震震源破裂过程反演结果的初步分析[J]. 地震地质, 2022, 44(4): 1059-1070. |
[4] | 魏延坤, 陈晓利. 不同地震滑坡危险性评价方法的适用性探讨——以玛多MS7.4地震为例[J]. 地震地质, 2022, 44(3): 590-603. |
[5] | 刘小利, 夏涛, 刘静, 姚文倩, 徐晶, 邓德贝尔, 韩龙飞, 贾治革, 邵延秀, 王焱, 乐子扬, 高天琪. 2021年青海玛多MW7.4地震分布式同震地表裂缝特征[J]. 地震地质, 2022, 44(2): 461-483. |
[6] | 韩龙飞, 刘静, 姚文倩, 王文鑫, 刘小利, 高云鹏, 邵延秀, 李金阳. 2021年玛多MW7.4地震震中区地表破裂的精细填图及阶区内的分布式破裂讨论[J]. 地震地质, 2022, 44(2): 484-505. |
[7] | 姚文倩, 王子君, 刘静, 刘小利, 韩龙飞, 邵延秀, 王文鑫, 徐晶, 秦可心, 高云鹏, 王焱, 李金阳, 曾宪阳. 2021年青海玛多MW7.4地震同震地表破裂长度的讨论[J]. 地震地质, 2022, 44(2): 541-559. |
[8] | 张驰, 李智敏, 任治坤, 刘金瑞, 张志亮, 武登云. 日月山断裂南段晚第四纪活动特征[J]. 地震地质, 2022, 44(1): 1-19. |
[9] | 闫小兵, 周永胜, 李自红, 扈桂让, 任瑞国, 郝雪景. 山西浮山断裂的晚第四纪活动与位移速率[J]. 地震地质, 2022, 44(1): 35-45. |
[10] | 梁子晗, 魏占玉, 庄其天, 孙稳, 何宏林. 基于高分辨率地形数据的富蕴M8.0地震地表破裂带精细特征[J]. 地震地质, 2021, 43(6): 1507-1523. |
[11] | 万永魁, 沈小七, 刘瑞丰, 刘峡, 郑智江, 李媛, 张扬, 王雷. 川滇地区活动块体边界断裂现今运动和应力分布[J]. 地震地质, 2021, 43(6): 1614-1637. |
[12] | 李经纬, 陈长云, 占伟, 武艳强. 青海玛多7.4级地震GNSS同震水平位移的快速获取[J]. 地震地质, 2021, 43(5): 1073-1084. |
[13] | 谈洪波, 王嘉沛, 杨光亮, 陈正松, 吴桂桔, 申重阳, 黄金水. 2021年玛多MS7.4地震的震后效应模拟[J]. 地震地质, 2021, 43(4): 936-957. |
[14] | 刘瑞春, 张锦, 郭文峰, 陈慧, 郑亚迪, 成诚. 鄂尔多斯块体东南缘现今的变形特征与构造模式探讨[J]. 地震地质, 2021, 43(3): 540-558. |
[15] | 华俊, 赵德政, 单新建, 屈春燕, 张迎峰, 龚文瑜, 王振杰, 李成龙, 李彦川, 赵磊, 陈晗, 范晓冉, 王绍俊. 2021年青海玛多MW7.3地震InSAR的同震形变场、断层滑动分布及其对周边区域的应力扰动[J]. 地震地质, 2021, 43(3): 677-691. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||