地震地质 ›› 2021, Vol. 43 ›› Issue (6): 1614-1637.DOI: 10.3969/j.issn.0253-4967.2021.06.015
万永魁1,2)(), 沈小七2),*(), 刘瑞丰1), 刘峡2), 郑智江2), 李媛2,3), 张扬2), 王雷4)
收稿日期:
2020-09-04
修回日期:
2020-11-17
出版日期:
2021-12-20
发布日期:
2022-01-29
通讯作者:
沈小七
作者简介:
万永魁, 男, 1989年生, 2016年于防灾科技学院获地质工程专业硕士学位, 工程师, 主要从事数值模拟研究, E-mail: 1069839372@qq.com。
基金资助:
WAN Yong-kui1,2)(), SHEN Xiao-qi2),*(), LIU Rui-feng1), LIU Xia2), ZHENG Zhi-jiang2), LI Yuan2,3), ZHANG Yang2), WANG Lei4)
Received:
2020-09-04
Revised:
2020-11-17
Online:
2021-12-20
Published:
2022-01-29
Contact:
SHEN Xiao-qi
摘要:
基于川滇地区活动块体划分及断裂构造现有认知, 文中构建了包含块体主要边界断裂的二维有限元接触模型, 利用1991—2015年长期GPS观测结果, 采用“块体加载”方法模拟块体边界带现今的运动, 得到了断裂滑动速率和应力分布。结合震源机制解、 地震活动性等资料, 对川滇地区大型左旋走滑断裂带滑动速率分配、 传递与应力转换的关联, 局部区域正断型震源机制解的构造机制以及红河断裂南、 北段地震活动性差异的可能成因进行了初步探讨。主要结论包括: 1)东昆仑断裂带和鲜水河-小江断裂带的左旋走滑由NW向转变为近SN向, 断裂强烈转折区吸收了部分走滑分量并转化为应变积累, 呈高应力分布特征。2)受小江断裂左旋剪切的影响, 红河断裂中南段以右旋走滑兼微弱挤压运动为主, 并牵引断裂北段右旋走滑, 与金沙江和德钦-中甸断裂共同构成右阶斜列右旋剪切变形带, 正断型震源机制解多分布于该变形带的构造拉分区内。3)红河断裂中南段为弱压性, 北段呈弱张性, 更易破裂, 地震活动明显强于中南段。
中图分类号:
万永魁, 沈小七, 刘瑞丰, 刘峡, 郑智江, 李媛, 张扬, 王雷. 川滇地区活动块体边界断裂现今运动和应力分布[J]. 地震地质, 2021, 43(6): 1614-1637.
WAN Yong-kui, SHEN Xiao-qi, LIU Rui-feng, LIU Xia, ZHENG Zhi-jiang, LI Yuan, ZHANG Yang, WANG Lei. PRESENT SLIP AND STRESS DISTRIBUTION OF BLOCK BOUNDARY FAULTS IN THE SICHUAN-YUNNAN REGION[J]. SEISMOLOGY AND EGOLOGY, 2021, 43(6): 1614-1637.
图 1 2008年汶川8.0级地震后川滇地区MS≥6.0地震的分布(截至2020年10月)和本文模型的范围 震源机制解数据源于GCMT, 5次MS≥6.0余震采用郑勇等(2009)的重定位结果, 时间为2008年5月12日—7月24日
Fig. 1 The distribution of MS≥6.0 earthquakes in the Sichuan-Yunnan region after the 2008 Wenchuan MS8.0 earthquake(by October 2020)and the range of the model used in this paper.
图 2 a 川滇地区模型构架; b 网格划分结果 Ⅰ 西秦岭块体; Ⅱ 阿坝块体; Ⅲ 龙门山块体; Ⅳ 四川盆地; Ⅴ 藏东块体; Ⅵ 雅江块体; Ⅵ 香格里拉块体; Ⅷ 滇中块体; Ⅸ 滇东块体; Ⅹ 滇西南块体。1 东昆仑断裂; 2 白龙江-光盖山-迭山断裂; 3 文县断裂; 4 龙日坝断裂; 5 岷江断裂; 6 虎牙断裂; 7 龙门山断裂; 8 甘孜-玉树断裂; 9 鲜水河-小江断裂; 10 大凉山断裂; 11 金沙江断裂; 12 德钦-中甸-玉龙雪山东麓断裂; 13 维西-巍山-红河断裂; 14 南华-楚雄-建水断裂; 15 理塘断裂; 16 丽江-小金河断裂; 17 宁蒗-永胜-宾川断裂; 18 莲峰-昭通断裂; 19 怒江断裂; 20 大盈江断裂; 21 畹町-安定断裂; 22 南汀河东支、 西支断裂; 23 龙陵-澜沧断裂; 24 无量山断裂
Fig. 2 Model framework(a) and meshing result(b) in Sichuan-Yunnan region.
活动块体 | 采用GPS 测站数 | 欧拉极经度Lw/(°) | 欧拉极纬度Bw/(°) | 角速度Ww/(°)·Ma-1 | 模型标准差 /mm·a-1 | |||
---|---|---|---|---|---|---|---|---|
数值 | 误差 | 数值 | 误差 | 数值 | 误差 | |||
西秦岭 | 77 | 87.571 9 | 134.356 4 | -88.482 2 | 2.572 7 | 0.347 4 | 0.103 1 | 0.679 1 |
阿坝 | 19 | 31.614 3 | 11.697 4 | -82.993 5 | 2.289 4 | 2.972 8 | 0.649 6 | 1.051 1 |
龙门山 | 15 | 50.169 2 | 58.537 2 | -82.487 6 | 9.257 3 | 0.799 2 | 0.640 3 | 0.985 8 |
四川盆地 | 40 | 178.000 5 | 27.872 3 | -64.899 6 | 42.689 9 | 0.110 8 | 0.160 8 | 0.838 1 |
藏东 | 33 | 122.325 1 | 23.342 3 | -85.336 7 | 2.115 7 | 0.653 9 | 0.201 4 | 0.864 5 |
雅江 | 25 | 42.615 9 | 7.675 6 | -81.804 1 | 1.648 4 | 3.120 4 | 0.454 5 | 0.997 6 |
香格里拉 | 13 | 49.390 4 | 22.802 0 | -81.716 3 | 4.675 2 | 2.366 3 | 1.019 4 | 1.076 1 |
滇中 | 52 | -177.897 7 | 3.571 2 | 73.589 0 | 3.635 5 | 0.996 8 | 0.180 2 | 1.090 7 |
滇东 | 48 | 98.268 6 | 30.075 7 | -85.085 6 | 1.579 9 | 0.277 0 | 0.049 1 | 0.567 8 |
滇西南 | 46 | -170.168 7 | 2.636 2 | 79.229 8 | 1.587 1 | 1.734 1 | 0.190 5 | 0.870 5 |
表1 GPS数据反演的各活动块体运动参数
Table1 The motion parameters of each active block calculated from GPS data
活动块体 | 采用GPS 测站数 | 欧拉极经度Lw/(°) | 欧拉极纬度Bw/(°) | 角速度Ww/(°)·Ma-1 | 模型标准差 /mm·a-1 | |||
---|---|---|---|---|---|---|---|---|
数值 | 误差 | 数值 | 误差 | 数值 | 误差 | |||
西秦岭 | 77 | 87.571 9 | 134.356 4 | -88.482 2 | 2.572 7 | 0.347 4 | 0.103 1 | 0.679 1 |
阿坝 | 19 | 31.614 3 | 11.697 4 | -82.993 5 | 2.289 4 | 2.972 8 | 0.649 6 | 1.051 1 |
龙门山 | 15 | 50.169 2 | 58.537 2 | -82.487 6 | 9.257 3 | 0.799 2 | 0.640 3 | 0.985 8 |
四川盆地 | 40 | 178.000 5 | 27.872 3 | -64.899 6 | 42.689 9 | 0.110 8 | 0.160 8 | 0.838 1 |
藏东 | 33 | 122.325 1 | 23.342 3 | -85.336 7 | 2.115 7 | 0.653 9 | 0.201 4 | 0.864 5 |
雅江 | 25 | 42.615 9 | 7.675 6 | -81.804 1 | 1.648 4 | 3.120 4 | 0.454 5 | 0.997 6 |
香格里拉 | 13 | 49.390 4 | 22.802 0 | -81.716 3 | 4.675 2 | 2.366 3 | 1.019 4 | 1.076 1 |
滇中 | 52 | -177.897 7 | 3.571 2 | 73.589 0 | 3.635 5 | 0.996 8 | 0.180 2 | 1.090 7 |
滇东 | 48 | 98.268 6 | 30.075 7 | -85.085 6 | 1.579 9 | 0.277 0 | 0.049 1 | 0.567 8 |
滇西南 | 46 | -170.168 7 | 2.636 2 | 79.229 8 | 1.587 1 | 1.734 1 | 0.190 5 | 0.870 5 |
图 4 断层滑动与应力模拟结果 a 走滑速率(左旋为正, 右旋为负); b 张压速率(拉张为正, 挤压为负);c 剪切应力(左旋剪切为正, 右旋剪切为负); d 挤压应力
Fig. 4 Simulation results of fault slip and stress distribution.
图 6 a 1976年1月—2020年10月研究区内MW≥4.5地震的震源机制解(数据主要源于GCMT,部分数据采用易桂喜等(2017)重定位结果); b 模型区域运动学特征(扣除整体旋转)
Fig. 6 Focal mechanism of MW≥4.5 earthquakes from January 1991 to February 2019(The data are from GCMT and part of data are from the relocations obtained by YI Gui-xi et al.(2016))(a), and kinematic characteristics in the model range(global rotational motion deducted)(b).
[1] | 曹建玲, 石耀林, 张怀, 等. 2009. 青藏高原GPS 位移绕喜马拉雅东构造结顺时针旋转成因的数值模拟[J]. 科学通报, 54(2): 224-234. |
CAO Jian-ling, SHI Yao-lin, ZHANG Huai, et al. 2009. Numerical simulation of GPS observed clockwise rotation around the eastern Himalayan syntax in the Tibetan plateau[J]. Chinese Science Bulletin, 54(2): 224-234(in Chinese). | |
[2] | 常祖峰, 安晓文, 张艳凤. 2012. 畹町断裂晚第四纪活动与水系构造变形[J]. 地震地质, 34(2): 228-239. |
CHANG Zu-feng, AN Xiao-wen, ZHANG Yan-feng. 2012. Study on late-Quaternary activity and displacement of drainage systems along Wanding Fault[J]. Seismology and Geology, 34(2): 228-239(in Chinese). | |
[3] | 常祖峰, 常昊, 李鉴林, 等. 2015. 楚雄-南华断裂晚第四纪活动与1680年楚雄 6¾级地震[J]. 中国地震, 31(3): 492-500. |
CHANG Zu-feng, CHANG Hao, LI Jian-lin, et al. 2015. Late Quaternary activity of the Chuxiong-Nanhua Fault and the 1680 Chuxiong M6¾ earthquake[J]. Earthquake Research in China, 31(3): 492-500(in Chinese). | |
[4] | 常祖峰, 常昊, 臧阳, 等. 2016. 维西-乔后断裂新活动特征及其与红河断裂的关系[J]. 地质力学学报, 22(3): 517-530. |
CHANG Zu-feng, CHANG Hao, ZANG Yang, et al. 2016. Recent active features of Weixi-Qiaohou Fault and its relationship with the Honghe Fault[J]. Journal of Geomechanics, 22(3): 517-530(in Chinese). | |
[5] | 常祖峰, 陈刚, 余健强. 2011. 大盈江断裂晚更新世以来活动的地质证据[J]. 地震地质, 33(4): 877-888. |
CHANG Zu-feng, CHEN Gang, YU Jian-qiang. 2011. Geological evidence of activity along the Dayingjiang Fault since late Pleistocene[J]. Seismology and Geology, 33(4): 877-888(in Chinese). | |
[6] | 常祖峰, 张艳凤, 李鉴林, 等. 2014. 德钦-中甸-大具断裂晚第四纪活动的地质与地貌表现[J]. 地震研究, 37(1): 46-52. |
CHANG Zu-feng, ZHANG Yan-feng, LI Jian-lin, et al. 2014. The geological and geomorphic characteristic of late Quaternary activity of the Deqin-Zhongdian-Daju Fault[J]. Journal of Seismological Research, 37(1): 46-52(in Chinese). | |
[7] | 陈长云, 任金卫, 孟国杰, 等. 2013. 巴颜喀拉块体东部活动块体的划分、 形变特征及构造意义[J]. 地球物理学报, 56(12): 4125-4141. |
CHEN Chang-yun, REN Jin-wei, MENG Guo-jie, et al. 2013. Division deformation and tectonic implication of active blocks in the eastern segment of Bayan Har block[J]. Chinese Journal of Geophysics, 56(12): 4125-4141(in Chinese). | |
[8] | 陈棋福, 华诚, 李乐, 等. 2015. 龙门山断裂带深部构造变形的黏弹性模拟及其与强震活动的关联性探讨[J]. 地球物理学报, 58(11): 4129-4137. |
CHEN Qi-fu, HUA Cheng, LI Le, et al. 2015. Viscoelastic simulation of deep tectonic deformation of Longmenshan fault zone and its implication for strong earthquakes[J]. Chinese Journal of Geophysics, 58(11): 4129-4137(in Chinese). | |
[9] | 程佳, 徐锡伟, 甘卫军, 等. 2012. 青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源[J]. 地球物理学报, 55(4): 1198-1212. |
CHENG Jia, XU Xi-wei, GAN Wei-jun, et al. 2012. Block model and dynamic implication from the earthquake activities and crustal motion in the southeastern margin of Tibetan plateau[J]. Chinese Journal of Geophysics, 55(4): 1198-1212(in Chinese). | |
[10] | 丁开华, 徐才军, 邹容, 等. 2013. 利用GPS分析川滇地区活动地块运动与应变模型[J]. 武汉大学学报(信息科学版), 38(7): 760, 822-827. |
DING Kai-hua, XU Cai-jun, ZOU Rong, et al. 2013. Crustal movement and strain model of active blocks analyzed by GPS in Sichuan-Yunnan region[J]. Geomatics and Information Science of Wuhan University, 38(7): 760, 822-827(in Chinese). | |
[11] | 虢顺民, 计凤桔, 向宏发, 等. 2001. 红河断裂带[M]. 北京: 海洋出版社. |
GUO Shun-min, JI Feng-ju, XIANG Hong-fa, et al. 2001. The Red River Fault Zone[M]. China Ocean Press, Beijing(in Chinese). | |
[12] | 虢顺民, 计凤桔, 向宏发, 等. 2013. 云南红河断裂带地质图: 1:50 000[CM]. 北京: 地震出版社. |
GUO Shun-min, JI Feng-ju, XIANG Hong-fa, et al. 2013. Geological Map of the Red River Fault in Yunnan Province, China [CM]. Seismological Press, Beijing(in Chinese). | |
[13] | 虢顺民, 向宏发, 周瑞琦, 等. 1999. 滇西南龙陵-澜沧断裂带: 大陆地壳上一条新生的破裂带[J]. 科学通报, 44(19): 2118-2121. |
GUO Shun-min, XIANG Hong-fa, ZHOU Rui-qi, et al. 1999. Longling-Lancang fault zone in southwest Yunnan, China: A newly-generated rupture zone in continental crust[J]. Chinese Science Bulletin, 44(19): 2118-2121(in Chinese). | |
[14] | 何宏林, 池田安隆, 何玉林, 等. 2008. 新生的大凉山断裂带--鲜水河-小江断裂系中段的裁弯取直[J]. 中国科学(D辑), 38(5): 564-574. |
HE Hong-lin, Ikeda H, HE Yu-lin, et al. 2008. Newly-generated Daliangshan fault zone--Shortcutting on the central segment of Xianshuihe-Xiaojiang fault system[J]. Science in China(Ser D), 38(5): 564-574(in Chinese). | |
[15] | 黄小龙, 吴中海, 吴坤罡, 等. 2016. 滇西北永胜地区主要活动断裂与活动构造体系[J]. 地质力学学报, 22(3): 531-547. |
HUANG Xiao-long, WU Zhong-hai, WU Kun-gang, et al. 2016. The main active faults and tectonic system in Yongsheng area, northwestern Yunnan[J]. Journal of Geomechanics, 22(3): 531-547(in Chinese). | |
[16] | 蒋锋云, 朱良玉, 王双绪, 等. 2013. 川滇地区地壳运动特征研究[J]. 地震研究, 36(3): 263-268. |
JIANG Feng-yun, ZHU Liang-yu, WANG Shuang-xu, et al. 2013. Research on the characteristics of crustal block movement in Sichuan-Yunnan area[J]. Journal of Seismological Research, 36(3): 263-268(in Chinese). | |
[17] | 李陈侠, 徐锡伟, 闻学泽, 等. 2011. 东昆仑断裂带中东部地震破裂分段性与走滑运动分解作用[J]. 中国科学(D辑), 41(9): 1295-1310. |
LI Chen-xia, XU Xi-wei, WEN Xue-ze, et al. 2011. Rupture segmentation and slip partitioning of the mid-eastern part of the Kunlun Fault, north Tibetan plateau[J]. Science in China(Ser D), 41(9): 1295-1310(in Chinese). | |
[18] | 李亚敏, 徐辉龙, 孙金龙, 等. 2008. 红河断裂带及其邻区的震源机制解特征及其反映的断裂活动分段性[J]. 热带海洋学报, 27(2): 32-39. |
LI Ya-min, XU Hui-long, SUN Jin-long, et al. 2008. Characteristics of focal mechanism solutions of Red River fault zone and their reflection on segmented fault activity[J]. Journal of Tropical Oceanography, 27(2): 32-39(in Chinese). | |
[19] | 李延兴, 张静华, 何建坤, 等. 2007. 由空间大地测量得到的太平洋板块现今构造运动与板内形变应变场[J]. 地球物理学报, 50(2): 437-447. |
LI Yan-xing, ZHANG Jing-hua, HE Jian-kun, et al. 2007. Current-day tectonic motion and intraplate deformation-strain field obtained from space geodesy in the Pacific Plate[J]. Chinese Journal of Geophysics, 50(2): 437-447(in Chinese). | |
[20] | 柳畅, 石耀霖, 朱伯靖, 等. 2014. 地壳流变结构控制作用下的龙门山断裂带地震发生机理[J]. 地球物理学报, 57(2): 404-418. |
LIU Chang, SHI Yao-lin, ZHU Bo-jing, et al. 2014. Crustal rheology control on mechanism of the earthquake generation at the Longmenshan Fault[J]. Chinese Journal of Geophysics, 57(2): 404-418(in Chinese). | |
[21] | 柳畅, 朱伯靖, 石耀霖. 2012. 黏弹性数值模拟龙门山断裂带应力积累及大震复发周期[J]. 地质学报, 86(1): 157-169. |
LIU Chang, ZHU Bo-jing, SHI Yao-lin. 2012. Stress accumulation of the Longmenshan Fault and recurrence interval of Wenchuan earthquake based on viscoelasticity simulation[J]. Acta Geologica Sinica, 86(1): 157-169(in Chinese). | |
[22] | 刘峡, 马瑾, 杜雪松, 等. 2016. 川滇主要断裂带近期运动变化及与地震活动关联性[J]. 中国科学(D辑), 46(5): 706-719. |
LIU Xia, MA Jin, DU Xue-song, et al. 2016. Recent movement changes of main fault zones in the Sichuan-Yunnan region and their relevance to seismic activity[J]. Science in China(Ser D), 46(5): 706-719(in Chinese). | |
[23] | 刘峡, 马瑾, 占伟, 等. 2013. 汶川地震前后山西断陷带的地壳运动[J]. 大地测量与地球动力学, 33(3): 5-10. |
LIU Xia, MA Jin, ZHAN Wei, et al. 2013. Crustal motion on Shanxi rift zone before and after Wenchuan earthquake[J]. Journal of Geodesy and Geodynamics, 33(3): 5-10(in Chinese). | |
[24] | 刘峡, 孙东颖, 马瑾, 等. 2014. GPS结果揭示的龙门山断裂带现今形变与受力: 与川滇地区其他断裂带的对比研究[J]. 地球物理学报, 57(4): 1091-1100. |
LIU Xia, SUN Dong-ying, MA Jin, et al. 2014. Present-day deformation and stress state of Longmenshan Fault from GPS results: Comparative research on active faults in Sichuan-Yunnan region[J]. Chinese Journal of Geophysics, 57(4): 1091-1100(in Chinese). | |
[25] | 吕江宁, 沈正康, 王敏. 2003. 川滇地区现代地壳运动速度场和活动块体模型研究[J]. 地震地质, 25(4): 543-554. |
LÜ Jiang-ning, SHEN Zheng-kang, WANG Min. 2003. Contemporary crustal deformation and active tectonic block model of the Sichuan-Yunnan region, China[J]. Seismology and Geology, 25(4): 543-554(in Chinese). | |
[26] | 马文涛, 徐锡伟, 曹忠权, 等. 2008. 震源机制解分类与川滇及邻近地区最新变形特征[J]. 地震地质, 30(4): 926-934. |
MA Wen-tao, XU Xi-wei, CAO Zhong-quan, et al. 2008. Classification of focal mechanism solutions and characteristics of latest crustal deformation of Sichuan-Yunnan region and its adjacency[J]. Seismology and Geology, 30(4): 926-934(in Chinese). | |
[27] | 庞亚瑾, 程惠红, 张怀, 等. 2017. 巴颜喀拉块体东缘形变及九寨沟地震孕震环境数值分析[J]. 地球物理学报, 60(10): 4046-4055. |
PANG Ya-jin, CHENG Hui-hong, ZHANG Huai, et al. 2017. Numerical modeling of crustal deformation in the eastern margin of the Bayan Har block and analysis of seismogenic environment of the 2017 Jiuzhaigou earthquake[J]. Chinese Journal of Geophysics, 60(10): 4046-4055(in Chinese). | |
[28] | 冉勇康, 陈立春, 程建武, 等. 2008. 安宁河断裂冕宁以北晚第四纪地表变形与强震破裂行为[J]. 中国科学(D辑), 38(5): 543-554. |
RAN Yong-kang, CHEN Li-chun, CHENG Jian-wu, et al. 2008. Late Quaternary surface deformation and rupture behavior of strong earthquake on the segment north of Mianning of the Anninghe Fault[J]. Science in China(Ser D), 38(5): 543-554(in Chinese). | |
[29] | 任俊杰, 徐锡伟, 张世民, 等. 2017. 东昆仑断裂带东端的构造转换与2017年九寨沟 MS7.0 地震孕震机制[J]. 地球物理学报, 60(10): 4027-4045. |
REN Jun-jie, XU Xi-wei, ZHANG Shi-min, et al. 2017. Tectonic transformation at the eastern termination of the eastern Kunlun fault zone and seismogenic mechanism of the 8 August 2017 Jiuzhaigou MS70 earthquake[J]. Chinese Journal of Geophysics, 60(10): 4027-4045(in Chinese). | |
[30] | 石峰. 2014. 南汀河断裂带构造地貌研究[D]. 北京: 中国地震局地质研究所. |
SHI Feng. 2014. Tectonic geomorphology of the Nantinghe Fault in southwest Yunnan[D]. Institute of Geology, China Earthquake Administration, Beijing(in Chinese). | |
[31] | 唐荣昌, 韩渭滨. 1993. 四川活动断裂与地震[M]. 北京: 地震出版社: 368. |
TANG Rong-chang, HAN Wei-bin. 1993. Active Faults and Earthquakes in Sichuan Province [M]. Seismological Press, Beijing: 368(in Chinese). | |
[32] |
万永魁, 刘峡, 沈军, 等. 2017. 汶川地震前龙门山及其周缘断裂形变运动与应力累积的数值模拟[J]. 地震地质, 39(4): 233-249. doi: 10.3969/j.issn.0253-4967.2017.04.017.
DOI |
WAN Yong-kui, LIU Xia, SHEN Jun, et al. 2017. Numerical simulation of deformation movement and stress accumulation in Longmenshan and its adjacent fault before Wenchuan earthquake[J]. Seismology and Geology, 39(4): 233-249(in Chinese). | |
[33] | 王夫运, 潘素珍, 刘兰, 等. 2014. 玉溪-临沧剖面宽角地震探测: 红河断裂带及滇南地壳结构研究[J]. 地球物理学报, 57(10): 3247-3258. |
WANG Fu-yun, PAN Su-zhen, LIU Lan, et al. 2014. Wide angle seismic exploration of Yuxi-Lincang profile: The research of crustal structure of the Red River fault zone and southern Yunnan[J]. Chinese Journal of Geophysics, 57(10): 3247-3258(in Chinese). | |
[34] | 王双绪, 蒋锋云, 郝明, 等. 2013. 青藏高原东缘现今三维地壳运动特征研究[J]. 地球物理学报, 56(10): 3334-3345. |
WANG Shuang-xu, JIANG Feng-yun, HAO Ming, et al. 2013. Investigation of features of present 3D crustal movement in eastern edge of Tibet Plateau[J]. Chinese Journal of Geophysics, 56(10): 3334-3345(in Chinese). | |
[35] | 王阎昭, 王恩宁, 沈正康, 等. 2008. 基于GPS 资料约束反演川滇地区主要断裂现今活动速率[J]. 中国科学(D辑), 38(5): 582-597. |
WANG Yan-zhao, WANG En-ning, SHEN Zheng-kang, et al. 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China[J]. Science in China(Ser D), 38(5): 582-597(in Chinese). | |
[36] | 王阎昭, 王敏, 沈正康, 等. 2015. 怒江断裂现今错动速率与地震危险性[J]. 地震地质, 37(2): 374-383. |
WANG Yan-zhao, WANG Min, SHEN Zheng-kang, et al. 2015. Present-day slip rates and potential earthquake risks along the Nujiang Fault[J]. Seismology and Geology, 37(2): 374-383(in Chinese). | |
[37] | 魏文薪, 江在森, 武艳强, 等. 2012. 利用GPS数据研究川滇块体东边界主要断裂带运动特性[J]. 武汉大学学报(信息科学版), 37(9): 1041-1044, 1063. |
WEI Wen-xin, JIANG Zai-sen, WU Yan-qiang, et al. 2012. Motion characteristics of major faults in east boundary of Sichuan-Yunnan block obtained with GPS data[J]. Geomatics and Information Science of Wuhan University, 37(9): 1041-1044, 1063(in Chinese). | |
[38] | 闻学泽. 2000. 四川西部鲜水河-安宁河-则木河断裂带的地震破裂分段特征[J]. 地震地质, 22(3): 239-249. |
WEN Xue-ze. 2000. Character of rupture segmentation of the Xianshuihe-Anninghe-Zemuhe fault zone, western Sichuan[J]. Seismology and Geology, 22(3): 239-249(in Chinese). | |
[39] | 闻学泽, Allen C R, 罗灼礼, 等. 1989. 鲜水河全新世断裂带的分段性、 几何特征及其地震构造意义[J]. 地震学报, 11(4): 362-372. |
WEN Xue-ze, Allen C R, LUO Zhuo-li, et al. 1989. Segmentation, geometric features, and their seismotectonic implications for the Holocene Xianshuihe fault zone[J]. Acta Seismologica Sinica, 11(4): 362-372(in Chinese). | |
[40] | 闻学泽, 杜方, 龙锋, 等. 2011. 小江和曲江-石屏两断裂系统的构造动力学与强震序列的关联性[J]. 中国科学(D辑), 41(5): 713-724. |
WEN Xue-ze, DU Fang, LONG Feng, et al. 2011. Tectonic dynamics and correlation of major earthquake sequences of the Xiaojiang and Qujiang-Shiping fault systems, Yunnan, China[J]. Science in China(Ser D), 41(5): 713-724(in Chinese). | |
[41] | 闻学泽, 徐锡伟, 郑荣章, 等. 2003. 甘孜-玉树断裂的平均滑动速率与近代大地震破裂[J]. 中国科学(D辑), 33(S1): 199-208. |
WEN Xue-ze, XU Xi-wei, ZHENG Rong-zhang, et al. 2003. Average slip-rate and recent large earthquake ruptures along the Ganzi-Yushu Fault[J]. Science in China(Ser D), 33(S1): 199-208(in Chinese). | |
[42] | 闻学泽, 杜方, 易桂喜, 等. 2013. 川滇交界东段昭通、 莲峰断裂带的地震危险背景[J]. 地球物理学报, 56(10): 3361-3372. |
WEN Xue-ze, DU Fang, Yi Gui-xi, et al. 2013. Earthquake potential of the Zhaotong and Lianfeng fault zones of the eastern Sichuan-Yunnan border region[J]. Chinese Journal of Geophysics, 56(10): 3361-3372(in Chinese). | |
[43] | 吴中海, 张永双, 胡道功, 等. 2008. 滇西北哈巴-玉龙雪山东麓断裂的晚第四纪正断层作用及其动力学机制探讨[J]. 中国科学(D辑), 38(11): 1361-1375. |
WU Zhong-hai, ZHANG Yong-shuang, HU Dao-gong, et al. 2008. Late Quaternary normal faulting and its kinematic mechanism of eastern piedmont fault of the Haba-Yulong Snow Mountains in northwestern Yunnan, China[J]. Science in China(Ser D), 38(11): 1361-1375(in Chinese). | |
[44] | 徐锡伟, 闻学泽, 陈桂华, 等. 2008. 巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义[J]. 中国科学(D辑), 38(5): 529-542. |
XU Xi-wei, WEN Xue-ze, CHEN Gui-hua, et al. 2008. Discovery of the Longriba fault zone in the eastern Bayan Har block, China and its tectonic implication[J]. Science in China(Ser D), 38(5): 529-542(in Chinese). | |
[45] | 徐锡伟, 闻学泽, 于贵华, 等. 2005. 川西理塘断裂带平均滑动速率、 地震破裂分段与复发特征[J]. 中国科学(D辑), 35(6): 540-551. |
XU Xi-wei, WEN Xue-ze, YU Gui-hua, et al. 2005. Average slip rate, earthquake rupturing segmentation and recurrence behavior on the Litang fault zone, western Sichuan Province, China[J]. Science in China(Ser D), 35(6): 540-551(in Chinese). | |
[46] | 徐锡伟, 闻学泽, 郑荣章, 等. 2003. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学(D辑), 33(S1): 151-162. |
XU Xi-wei, WEN Xue-ze, ZHENG Rong-zhang, et al. 2003. Pattern of latest tectonic motion and its dynamics for active block in Sichuan-Yunnan region, China[J]. Science in China(Ser D), 33(S1): 151-162(in Chinese). | |
[47] | 杨国华, 江在森, 武艳强, 等. 2005. 中国大陆整体无净旋转基准及其应用[J]. 大地测量与地球动力学, 25(4): 6-10. |
YANG Guo-hua, JIANG Zai-sen, WU Yan-qiang, et al. 2005. No-net-rotation crustal movement of China mainland and its application[J]. Journal of Geodesy and Geodynamics, 25(4): 6-10(in Chinese). | |
[48] | 易桂喜, 龙锋, 梁明剑, 等. 2017. 2016年9月23日四川理塘M4.9和M5.1地震发震构造分析[J]. 地震地质, 39(5): 949-963. |
YI Gui-xi, LONG Feng, LIANG Ming-jian, et al. 2017. Seismogenic structure of the M4.9 and M5.1 Litang earthquakes on 23 Sept. 2016, southwestern China[J]. Seismology and Geology, 39(5): 949-963(in Chinese). | |
[49] | 易桂喜, 龙锋, 闻学泽, 等. 2015. 2014年11月22日康定M6.3地震序列发震构造分析[J]. 地球物理学报, 58(4): 1205-1219. |
YI Gui-xi, LONG Feng, WEN Xue-ze, et al. 2015. Seismogenic structure of the M6.3 Kangding earthquake sequence on 22 Nov. 2014, southwestern China[J]. Chinese Journal of Geophysics, 58(4): 1205-1219(in Chinese). | |
[50] | 俞晶星, 郑文俊, 袁道阳, 等. 2012. 西秦岭西段光盖山-迭山断裂带坪定-化马断裂的新活动性与滑动速率[J]. 第四纪研究, 32(5): 957-967. |
YU Jing-xing, ZHENG Wen-jun, YUAN Dao-yang, et al. 2012. Late Quaternary active characteristics and slip-rate of Pingding-Huama Fault, the eastern segment of Guanggaishan-Dieshan fault zone(West Qinling Mountain)[J]. Quaternary Sciences, 32(5): 957-967(in Chinese). | |
[51] | 张建国, 汪良谋, 徐煜坚, 等. 1993. 红河断裂深部震源环境介质力学性质分析[J]. 地震地质, 15(2): 131-137. |
ZHANG Jian-guo, WANG Liang-mou, XU Yu-jian, et al. 1993. Analysis of mechanics property of the medium under the deep seismic source environment along Red River Fault[J]. Seismology and Geology, 15(2): 131-137(in Chinese). | |
[52] | 张培震. 2008. 青藏高原东缘川西地区的现今构造变形、 应变分配与深部动力过程[J]. 中国科学(D辑), 38(9): 1041-1056. |
ZHANG Pei-zhen. 2008. Recent tectonic deformation, strain partitioning and deep dynamic processes in the eastern margin of Tibetan plateau, western Sichuan area[J]. Science in China(Ser D), 38(9): 1041-1056(in Chinese). | |
[53] | 张培震, 邓起东, 张国民, 等. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 33(S1): 12-20. |
ZHANG Pei-zhen, DENG Qi-dong, ZHANG Guo-min, et al. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China(Ser D), 33(S1): 12-20(in Chinese). | |
[54] | 张培震, 邓起东, 张竹琪, 等. 2013. 中国大陆的活动断裂、 地震灾害及其动力过程[J]. 中国科学(D辑), 43(10): 1607-1620. |
ZHANG Pei-zhen, DENG Qi-dong, ZHANG Zhu-qi, et al. 2013. Active faults, earthquake hazard and associated geodynamic process in continental China[J]. Science in China(Ser D), 43(10): 1607-1620(in Chinese). | |
[55] | 赵静, 江在森, 牛安福, 等. 2015. 川滇菱形块体东边界断层闭锁程度与滑动亏损动态特征研究[J]. 地球物理学报, 58(3): 872-885. |
ZHAO Jing, JIANG Zai-sen, NIU An-fu, et al. 2015. Study on dynamic characteristics of fault locking and fault slip deficit in the eastern boundary of the Sichuan-Yunnan rhombic block[J]. Chinese Journal of Geophysics, 58(3): 872-885(in Chinese). | |
[56] | 郑勇, 傅容珊, 熊熊. 2006. 中国大陆及周边地区现代岩石圈演化动力学模拟[J]. 地球物理学报, 49(2): 415-427. |
ZHENG Yong, FU Rong-shan, XIONG Xiong. 2006. Dynamic simulation of lithospheric evolution from the modern China mainland and its surrounding areas[J]. Chinese Journal of Geophysics, 49(2): 415-427(in Chinese). | |
[57] | 郑勇, 马宏生, 吕坚, 等. 2009. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系[J]. 中国科学(D辑), 39(4): 413-426. |
ZHENG Yong, MA Hong-sheng, LÜ Jian, et al. 2009. Source mechanism of strong aftershocks(MS≥5.6)of the 2008-05-12 Wenchuan earthquake and the implication for seismotectonics[J]. Science in China(Ser D), 39(4): 413-426(in Chinese). | |
[58] | 周荣军, 李勇, Alexander L D, 等. 2006. 青藏高原东缘活动构造[J]. 矿物岩石, 26(2): 40-51. |
ZHOU Rong-jun, LI Yong, Alexander L D, et al. 2006. Active tectonics of the eastern margin of the Tibet Plateau[J]. Journal of Mineralogy and Petrology, 26(2): 40-51(in Chinese). | |
[59] | 朱守彪, 张培震. 2009. 2008年汶川 MS8.0 地震发生过程的动力学机制研究[J]. 地球物理学报, 52(2): 418-427. |
ZHU Shou-biao, ZHANG Pei-zheng. 2009. A study on the dynamical mechanism of the Wenchuan MS8.0 earthquake, 2008[J]. Chinese Journal of Geophysics, 52(2): 418-427(in Chinese). | |
[60] |
Allen C R, Lou Z L, Qian H, et al. 1991. Filed study of a highly active fault zone: The Xianshuihe Fault of southwestern China[J]. Geological Society of America Bulletin, 103(9): 1178-1199.
DOI URL |
[61] |
Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703-706.
DOI URL |
[62] | Densmore A L, Ellis M A, Li Y, et al. 2007. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan plateau[J]. Tectonics, 26(4): TC4005. |
[63] |
DeMets C, Gordon R G, Argus D F, et al. 1990. Current plate motions[J]. Geophysical Journal International, 101(2): 425-478.
DOI URL |
[64] | Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan plateau inferred from GPS measurements[J]. Journal of Geophysical Research, 112: B08416. |
[65] | Kiby E, Harkins N, Wang E Q, et al. 2007. Slip rate gradients along the eastern Kunlun Fault[J]. Tectonics, 26(2): TC2010. |
[66] |
Li L, Li P E, Si Y J, et al. 2019. The stress evolution before the 2013 M 7.0 Lushan earthquake in the Longmen Shan area since 1900 [J]. Journal of Geodynamics, 125:1-12.
DOI URL |
[67] |
Liang H B, Zhan W, Li J W. 2021. Vertical surface displacement of mainland China from GPS using the multisurface function method[J]. Advances in Space Research, 68(12): 4898-4915.
DOI URL |
[68] | Liang S M, Gan W J, Shen C Z, et al. 2013. Three-dimensional velocity field of present-day crustal motion of the Tibetan plateau derived from GPS measurements[J]. Journal of Geophysical Research, 118(10): 1-11. |
[69] | Liu C, Zhu B J, Yang X L, et al. 2015. Crustal rheology control on earthquake activity across the margin of the Tibetan plateau: Insights from numerical modelling[J]. Journal of Asian Earth Sciences, 10:20-30. |
[70] | McCaffrey R. 2005. Block kinematics of the Pacific-North American plate boundary in the southwest United States from inversion of GPS, seismological, and geologic data[J]. Journal of Geophysical Research, 110: B07401. |
[71] |
Minster J B, Jordan T H, Molnar P, et al. 1974. Numerical modeling of instantaneous plate tectonics[J]. Geophysical Journal International, 36(3): 541-576.
DOI URL |
[72] |
Molnar P, Deng Q. 1984. Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia[J]. Journal of Geophysical Research, 89(B7): 6203-6227.
DOI URL |
[73] |
Morgan W J. 1968. Rises, trenches, great faults, and crustal blocks[J]. Journal of Geophysical Research, 73(6): 1959-1982.
DOI URL |
[74] | Ren J J, Xu X W, Yeats R S, et al. 2013. Millennial slip rates of the Tazang Fault, the eastern termination of Kunlun Fault: Implications for strain partitioning in eastern Tibet[J]. Tectonophysics, 68:1180-1200. |
[75] |
Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 276(5313): 788-790.
PMID |
[76] |
Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan plateau[J]. Science, 321(5892): 1054-1058.
DOI PMID |
[77] |
Shen F, Royden L H, Burchfiel B C. 2001. Large-scale crustal deformation of the Tibetan plateau[J]. Journal of Geophysical Research, 106(B4): 6793-6816.
DOI URL |
[78] |
Shen Z K, Lü J N, Wang M, et al. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan plateau[J]. Journal of Geophysical Research: Solid Earth, 110(B11). doi: 10.1029/2004JB003421.
DOI |
[79] |
Zheng G, Wang H, Wright T J, et al. 2017. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 122(11): 9290-9312.
DOI URL |
[1] | 杨源源, 李鹏飞, 路硕, 疏鹏, 潘浩波, 方良好, 郑海刚, 赵朋, 郑颖平, 姚大全. 郯庐断裂带中段F5断裂淮河-女山湖段的古地震与垂直滑动速率[J]. 地震地质, 2022, 44(6): 1365-1383. |
[2] | 张秀丽, 熊建国, 张培震, 刘晴日, 姚勇, 钟岳志, 张会平, 李有利. 中更新世晚期以来中条山北麓断层滑动速率研究[J]. 地震地质, 2022, 44(6): 1403-1420. |
[3] | 邵延秀, 刘静, 高云鹏, 王文鑫, 姚文倩, 韩龙飞, 刘志军, 邹小波, 王焱, 李云帅, 刘璐. 同震地表破裂的位移测量与弥散变形分析——以2021年青海玛多MW7.4地震为例[J]. 地震地质, 2022, 44(2): 506-523. |
[4] | 张驰, 李智敏, 任治坤, 刘金瑞, 张志亮, 武登云. 日月山断裂南段晚第四纪活动特征[J]. 地震地质, 2022, 44(1): 1-19. |
[5] | 张致伟, 龙锋, 赵小艳, 王迪. 川滇地区的震源机制解及应力场特征[J]. 地震地质, 2022, 44(1): 170-187. |
[6] | 闫小兵, 周永胜, 李自红, 扈桂让, 任瑞国, 郝雪景. 山西浮山断裂的晚第四纪活动与位移速率[J]. 地震地质, 2022, 44(1): 35-45. |
[7] | 刘瑞春, 张锦, 郭文峰, 陈慧, 郑亚迪, 成诚. 鄂尔多斯块体东南缘现今的变形特征与构造模式探讨[J]. 地震地质, 2021, 43(3): 540-558. |
[8] | 张波, 田勤俭, 王爱国, 李文巧, 徐岳仁, 高泽民. 西秦岭临潭-宕昌断裂第四纪最新活动特征[J]. 地震地质, 2021, 43(1): 72-91. |
[9] | 朱爽, 梁洪宝, 魏文薪, 李经纬. 天山地震带主要活动断层现今的滑动速率及其地震矩亏损[J]. 地震地质, 2021, 43(1): 249-261. |
[10] | 陈健龙, 张冬丽, 周宇. 利用Envisat ASAR数据探讨渭河盆地断层现今的滑动速率[J]. 地震地质, 2020, 42(2): 333-345. |
[11] | 罗全星, 李传友, 任光雪, 李新男, 马字发, 董金元. 阳高-天镇断裂晚第四纪活动特征及滑动速率[J]. 地震地质, 2020, 42(2): 399-413. |
[12] | 李玉江, 石富强, 张辉, 魏文薪, 徐晶, 邵志刚. 川滇地区主要断裂带上的库仑应力变化及其对地震危险性的指示[J]. 地震地质, 2020, 42(2): 526-546. |
[13] | 田镇, 杨志强, 王师迪. 喜马拉雅东构造结主要断裂的地震矩亏损与危险性评估[J]. 地震地质, 2020, 42(1): 33-49. |
[14] | 乔鑫, 屈春燕, 单新建, 李彦川, 朱传华. 基于时序InSAR的海原断裂带形变特征及运动学参数反演[J]. 地震地质, 2019, 41(6): 1481-1496. |
[15] | 姚远, 李帅, 黄帅堂, 贾海梁. 西准噶尔冬别列克断裂晚第四纪以来的阶地位错与滑动速率[J]. 地震地质, 2019, 41(4): 803-820. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||