地震地质 ›› 2021, Vol. 43 ›› Issue (6): 1381-1397.DOI: 10.3969/j.issn.0253-4967.2021.06.003
收稿日期:
2020-10-26
修回日期:
2021-01-08
出版日期:
2021-12-20
发布日期:
2022-01-29
作者简介:
李正芳, 女, 1981生, 2013年于中国地震局地质研究所获构造地质学博士学位, 副研究员, 主要研究方向为发震构造识别、 潜在震源区划分及地震危险性分析, 电话: 010-62009009, E-mail: lizhengfang07@163.com。
基金资助:
LI Zheng-fang1)(), ZHOU Ben-gang1), XIAO Hai-bo2)
Received:
2020-10-26
Revised:
2021-01-08
Online:
2021-12-20
Published:
2022-01-29
摘要:
琉球-马尼拉海沟属于西太平洋板块俯冲带, 2011年3月11日日本地震的震中同样位于西太平洋板块俯冲带, 前者是否与“3·11”地震具有相同的构造背景和条件, 是评估琉球-马尼拉海沟是否同样具备发生9级地震潜在能力的关键因素。文中对大量资料进行了分析, 对琉球-马尼拉海沟的构造背景、 分段特征及最大潜在发震能力进行了评估, 认为琉球海沟属于海沟-岛弧-弧后盆地俯冲构造体系, 岛弧与海沟处于向E后退的状态, 表现为弱耦合特征, 构造上可分为6个破裂段, 最大潜在地震为8.5级; 马尼拉海沟受古扩张洋脊形成俯冲板块中的“板片窗”影响, 长度及规模远小于目前已发生9级以上地震的俯冲带, 构造上可分为6个破裂段, 最大潜在地震为8.8级。综合结果分析认为, 琉球-马尼拉海沟无论是在构造背景还是规模上都与日本“3·11”地震的构造样式存在较大差异。
中图分类号:
李正芳, 周本刚, 肖海波. 琉球-马尼拉海沟的构造背景及发震能力评估[J]. 地震地质, 2021, 43(6): 1381-1397.
LI Zheng-fang, ZHOU Ben-gang, XIAO Hai-bo. EVALUATION OF RYUKYU-MANILA TRENCH TECTONIC BACKGROUND AND SEISMOGENIC ABILITY[J]. SEISMOLOGY AND EGOLOGY, 2021, 43(6): 1381-1397.
图 1 西太平洋、 东印度洋板块的构造格局 1 千岛海沟; 2 日本海沟; 3 伊豆-小笠原海沟; 4 马里亚纳海沟; 5 Yap Palau-Ayu海沟; 6 南海海槽;7 琉球海沟; 8 马尼拉海沟; 9 菲律宾海沟
Fig. 1 Tectonic framework of the west Pacific and east Indian Ocean plates.
图 2 千岛—马尼拉海沟俯冲P波反演剖面线的位置及俯冲带的形态(Lu et al., 2001)
Fig. 2 Location of P wave inversion profile lines and geometry of subduction zones from Kuril Trench to Manila Trench(Lu et al., 2001).
日期 | 地点 | 震级 /MW | 震源深度 /km | 海沟长度 /km | 俯冲带类型 | 板块聚敛速率 /mm·a-1 |
---|---|---|---|---|---|---|
1960-05-22 | 智利 | 9.5 | 60 | 2 800 | 海沟-岛弧 | 80 |
1964-03-28 | 阿拉斯加州 | 9.2 | 23 | 3 760 | 海沟-岛弧 | 56 |
2004-12-26 | 苏门答腊 | 9.0 | 28.6 | 4 200 | 海沟-岛弧 | 30~40 |
2010-02-27 | 智利 | 8.8 | 24~36 | 2 800 | 海沟-岛弧 | 80 |
2011-03-11 | 日本 | 9.0 | 24 | 3 000 | 海沟-岛弧(弧后扩张停止) | 105 |
1952-11-04 | 堪察加半岛 | 9.0 | 45 | 3 000 | 海沟-岛弧(弧后扩张停止) | 78 |
表1 世界俯冲带6次大地震的海啸源特征
Table1 Characteristics of the tsunami sources induced by the six subduction mega-thrust earthquakes in the world
日期 | 地点 | 震级 /MW | 震源深度 /km | 海沟长度 /km | 俯冲带类型 | 板块聚敛速率 /mm·a-1 |
---|---|---|---|---|---|---|
1960-05-22 | 智利 | 9.5 | 60 | 2 800 | 海沟-岛弧 | 80 |
1964-03-28 | 阿拉斯加州 | 9.2 | 23 | 3 760 | 海沟-岛弧 | 56 |
2004-12-26 | 苏门答腊 | 9.0 | 28.6 | 4 200 | 海沟-岛弧 | 30~40 |
2010-02-27 | 智利 | 8.8 | 24~36 | 2 800 | 海沟-岛弧 | 80 |
2011-03-11 | 日本 | 9.0 | 24 | 3 000 | 海沟-岛弧(弧后扩张停止) | 105 |
1952-11-04 | 堪察加半岛 | 9.0 | 45 | 3 000 | 海沟-岛弧(弧后扩张停止) | 78 |
图 7 琉球海沟、 冲绳海槽地区的浅源地震震源机制分区 (1976年1月—1997年2月, 震源深度<50km)(Fabbri et al., 1999)
Fig. 7 Focal mechanisms zoning of shallow-focus earthquakes in Ryukyu Trench and Okinawa Trough (1976-01—1997-02, focal depth<50km)(Fabbri et al., 1999).
图 8 浅源震源机制差异的分界线与弧前凹陷分布(Fu et al., 2004)
Fig. 8 Dividing lines between differences of shallow focal mechanisms and distribution of forearc depressions(Fu et al., 2004).
琉球海沟的破裂源 | 位置起点 | 走向/(°) | 长度/km | 矩震级规模限/MW | |
---|---|---|---|---|---|
东经 | 北纬 | ||||
RL1 | 132°44' | 30°46' | 30 | 290 | 8.5 |
RL2 | 131°14' | 28°31' | 32 | 256 | 8.4 |
RL3 | 129°50' | 26°35' | 45 | 282 | 8.5 |
RL4 | 127°49' | 24°47' | 53 | 215 | 8.3 |
RL5 | 126°01' | 23°31' | 72 | 130 | 7.9 |
RL6 | 124°46' | 23°15' | 81 | 170 | 8.1 |
终点 | 123°06' | 23°08' | |||
RL(5+6) | 300 | 8.5 |
表2 琉球海沟的破裂段划分与震级
Table2 Segmentation of ruptures and earthquake magnitude in Ryukyu Trench
琉球海沟的破裂源 | 位置起点 | 走向/(°) | 长度/km | 矩震级规模限/MW | |
---|---|---|---|---|---|
东经 | 北纬 | ||||
RL1 | 132°44' | 30°46' | 30 | 290 | 8.5 |
RL2 | 131°14' | 28°31' | 32 | 256 | 8.4 |
RL3 | 129°50' | 26°35' | 45 | 282 | 8.5 |
RL4 | 127°49' | 24°47' | 53 | 215 | 8.3 |
RL5 | 126°01' | 23°31' | 72 | 130 | 7.9 |
RL6 | 124°46' | 23°15' | 81 | 170 | 8.1 |
终点 | 123°06' | 23°08' | |||
RL(5+6) | 300 | 8.5 |
图 11 琉球海沟破裂段的分布(L代表分段的点位, RL代表破裂段)
Fig. 11 Distribution of rupture segments in Ryukyu Trench (L represents the segmentation point, RL represents the rupture segment).
图 12 马尼拉海沟构造简图(据Yang et al., 1996) 图中五角星表示第四纪以来活动过的火山, 三角形表示第四纪已经停止活动的火山。ST 斯图尔特浅滩; VH 维甘高地
Fig. 12 Tectonic schematic diagram of Manila Trench(after Yang et al., 1996).
马尼拉破裂源 | 位置终点 | 走向/(°) | 长度/km | 震级 /MW | |
---|---|---|---|---|---|
东经 | 北纬 | ||||
RM1 | 119°51' | 21°58' | 350 | 210 | 8.2 |
RM2 | 120°21' | 20°06' | 29 | 310 | 8.6 |
RM3 | 118°56' | 17°40' | 3 | 135 | 7.9 |
RM4 | 119°09' | 16°24' | 351 | 140 | 7.9 |
RM5 | 119°05' | 15°12' | 353 | 166 | 8 |
RM6 | 119°16' | 13°44' | 308 | 142 | 7.9 |
终点 | 120°17' | 12°55' | |||
RM(2+3) | 445 | 8.8 | |||
RM(4+5+6) | 450 | 8.8 |
表3 马尼拉海沟破裂源的基本参数
Table3 Basic parameters of rupture sources in Manila Trench
马尼拉破裂源 | 位置终点 | 走向/(°) | 长度/km | 震级 /MW | |
---|---|---|---|---|---|
东经 | 北纬 | ||||
RM1 | 119°51' | 21°58' | 350 | 210 | 8.2 |
RM2 | 120°21' | 20°06' | 29 | 310 | 8.6 |
RM3 | 118°56' | 17°40' | 3 | 135 | 7.9 |
RM4 | 119°09' | 16°24' | 351 | 140 | 7.9 |
RM5 | 119°05' | 15°12' | 353 | 166 | 8 |
RM6 | 119°16' | 13°44' | 308 | 142 | 7.9 |
终点 | 120°17' | 12°55' | |||
RM(2+3) | 445 | 8.8 | |||
RM(4+5+6) | 450 | 8.8 |
[1] | 高祥林. 2003. 琉球海沟的构造和运动特征[J]. 地球物理学进展, 18(2): 293-301. |
GAO Xiang-lin. 2003. The structure and movement characteristics of the Ryukyu Trench[J]. Progress in Geophysics, 18(2): 293-301(in Chinese). | |
[2] | 黄慧娟. 2008. 马尼拉海沟地震引发海啸的潜势分析[D]. 台湾: 中央大学水文科学研究所. |
HUANG Hui-juan. 2008. Potential analysis of the tsunami triggered by the Manila Trench. earthquake[D]. Institute of Hydrological Sciences, Central University, Taiwan(in Chinese). | |
[3] | 刘再峰, 詹文欢, 张志强. 2007. 台湾-吕宋岛双火山弧的构造意义[J]. 大地构造与成矿学, 31(2): 145-150. |
LIU Zai-feng, ZHAN Wen-huan, ZHANG Zhi-qiang. 2007. Tectonic implications of the double island arc between Taiwan and Luzon[J]. Geotectonica et Metallogenia, 31(2): 145-150(in Chinese). | |
[4] |
Bautista B C, Bautista M L P, Oike K, et al. 2001. A new insight on the geometry of subducting slabs in northern Luzon, Philippines[J]. Tectonophysics, 339(3-4): 279-310.
DOI URL |
[5] |
Fabbri O, Fournier M. 1999. Extension in the southern Ryukyu arc(Japan): Link with oblique subduction and back arc rifting[J]. Tectonics, 18(3): 486-497.
DOI URL |
[6] | Fukao Y. 1979. Tsunami earthquakes and subduction processes near deep-sea trenches[J]. Journal of Geophysical Research: Solid Earth, 84(5): 2303-2314. |
[7] |
Fu M, Liu L, Zheng Y, et al. 2004. Tectonic geomorphology of the Ryukyu Trench-Arc-Backarc System: geological-geophysical exploration and mapping[J]. Chinese Science Bulletin, 49(14): 1512-1526.
DOI URL |
[8] | Hayes D E, Lewis S D. 1984. A geophysical study of the Manila Trench, Luzon, Philippines: 1. Crustal structure, gravity, and regional tectonic evolution[J]. Journal of Geophysical Research: Solid Earth, 89(NB11): 9171-9195. |
[9] | Kao H, Chen W P. 1991. Earthquakes along the Ryukyu-Kyushu Arc: Strain segmentation, lateral compression, and the thermomechanical state of the plate interface[J]. Journal of Geophysical Research: Solid Earth, 96(B13): 21443-21485. |
[10] | Kao H, Jack S, Ma K F. 1998. Transition from oblique subduction to collision: Earthquake in the southernmost Ryukyu arc-Taiwan region[J]. Journal of Geophysical Research: Solid Earth, 103(B4): 7211-7229. |
[11] |
Kizaki K. 1986. Geology and tectonics of the Ryukyu Islands[J]. Tectonophysics, 125(1-3): 193-207.
DOI URL |
[12] |
Ku C Y, Hsu S K. 2009. Crustal structure and deformation at the northern Manila Trench between Taiwan and Luzon islands[J]. Tectonophysics, 466(3): 229-240.
DOI URL |
[13] | Lu H, Hayashi D. 2001. Genesis of Okinawa Trough and thrust development within accretionary prism by means of 2D finite element method[J]. Structural Geology(The Journal of the Tectonic Research Group of Japan), 45(1): 47-64. |
[14] |
McCaffrey R, Qamar A I, King R W, et al. 2007. Fault locking, block rotation and crustal deformation in the Pacific Northwest[J]. Geophysical Journal International, 169(3): 1315-1340.
DOI URL |
[15] |
Megawati K, Shaw F, Sieh K, et al. 2009. Tsunami hazard from the subduction megathrust of the South China Sea: Part I. Source characterization and the resulting tsunami[J]. Journal of Asian Earth Sciences, 36(1): 13-20.
DOI URL |
[16] | Newman A V, Schwartz S Y, Gonzalez V, et al. 2002. Along strike variability in the seismogenic zone below the Nicoya Peninsula, Costa Rica[J]. Geophysical Research Letters, 29(20): 128-137. |
[17] |
Pacheco J, Sykes L R. 1992. Seismic moment catalog of large shallow earthquakes, 1900 to 1989 [J]. Bulletin of the Seismological Society of America, 82(3): 1306-1349.
DOI URL |
[18] | Papazachos B C, Scordilis E M, Panagiotopoulos D G, et al. 2004. Global relations between seismic fault parameters and moment magnitude of earthquakes[J]. Bulletin of the Geological Society of Greece, 25(2): 1482-1489. |
[19] |
Rong Y, Jackson D D, Magistrale H, et al. 2014. Magnitude limits of subduction zone earthquakes[J]. Bulletin of the Seismological Society of America, 104(5): 2359-2377.
DOI URL |
[20] |
Slob S, Fernandez-Alonso M, Bornas M, et al. 1998. Volcanic hazard mapping in the Philippines using remote sensing and GIS[J]. Earth Surface Remote Sensing Ⅱ. doi: 10.117/12.332734.
DOI |
[21] |
Yang T F, Lee T, Chen C H, et al. 1996. A double island arc between Taiwan and Luzon: Consequence of ridge subduction[J]. Tectonophysics, 258(1-4): 85-101.
DOI URL |
[1] | 石峰, 何宏林, 周本刚, 魏占玉, 毕丽思. 马尼拉海沟地震海啸对中国大陆的影响[J]. 地震地质, 2018, 40(3): 579-589. |
[2] | 马保起, 舒赛兵, 刘光勋. 山东半岛东北部新发现近EW向活断层[J]. 地震地质, 2004, 26(4): 638-644. |
[3] | 周本刚, 冉勇康, 环文林, 冉洪流. 山东海阳断裂东石兰沟段晚更新世以来地表断错特征与最大潜在地震估计[J]. 地震地质, 2002, 24(2): 159-166. |
[4] | 曲国胜, 陈杰, 陈新发, Canerot J, 李亦纲, 尹军平, 李军, 彭琪宇, 尹金辉. 塔里木盆地阿图什-八盘水磨反冲构造系统研究[J]. 地震地质, 2001, 23(1): 1-14. |
[5] | 张裕明. 几个术语的含义及地震构造区最大潜在地震评价[J]. 地震地质, 1993, 15(4): 375-380. |
[6] | 潘华, 鄢家全. 评定设计基准地震动的地震构造法[J]. 地震地质, 1993, 15(4): 347-352. |
[7] | 何宏林, 周本刚. 地震活动断层分段与最大潜在地震[J]. 地震地质, 1993, 15(4): 333-340. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||